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ABS-'RAC

• This develops ame of wrk of Foulis, Randall, Aerts, and Piron
in the filds of empirical a e and quantun logic fran an algebraic
point of Ne. More specificLly, it begins with three axioms of what is
called a .'subtraction algebra, ad generates various theorems associated
with properties which are useful in empirical science.

After a foundation is established, it moes on to define the term -, - - ,
a tool devised by Fouls and Randall in their study. We -define it-as a

< -dominated, atomic, semi-Boolean algebra" which satisfies an additional
condition called '"condition M.", Several properties of the maml are dis-
cussed, and different types of umnals are given: classical semi-classical
and non-classical.

--WWd - ft operational cclements, operational perspectivity, atoms, events,
and tests, before moving on to define a logic, and bow it is derived from a
maml. Properties of the logic are discussed, including a subtraction
operation, a partial order, and an ortho complement.

Next, a computer progran is presented. Its purpose is to take a finite semi-
Boolean algebra and decide if the algebra is a manual. This is followed by a
brief non-classical probabilistic discussion, which includes topices such as
weights, pure states, and dispersion-free states.

Aerts' and Piron' s work with properties, states, ad qu~tioqs is briefly
discussed before moving on to several examples, f o! the arisi
navigation problems. The eaples include the "hook," the "square, the
kight Triangle, "J and the ee algebra."' Empirical techniques are

daiuistrated on these exa les. The examples ccmprise the bulk of this
paper.
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INTRODUCTION

What began as a project designed to examine the present formal mat he-
matical structure for quantum mechanics has turned out to be more of
an examination of empirical logic, the science of interpreting outcomes
of physical experiments. This is certainly a natural metamorphosis,
since empirical logic enables one to interpret quantum mechanical results
on a most fundamental level, allowing one to explore the interrelation-
ship of outcomes of physical experiments without the constraints of some
dominating mathematical structure.

What makes quantum mechanics an important area to study using empirical
techniques is that quantum theory is so accurate -- it has been able to
predict results of experiments to a high degree of accuracy. It is in-
teresting to study quantum physics because the results are not the ones
that an individual indoctrinated only in classical physics would expect
to receive.

In classical physics, one deals in general with macroscopic bodies.
These bodies exhibit properties which are natural to us, due to the fact
that we observe classical sys-tems in action every-day. For example, we
get a feel for the laws of conservation of momentum and conservation of
energy every time we play a gamqle of tennis. We can also identify things
such as time, mass, position, speed, acceleration, and even energy every
time we go for a ride in a car.

But when we discuss things in the realm of quantum physics, we are talking
about what occurs on a microscopic level. We may deal with atoms, or
even parts of atoms like electrons, protons, neutrons, or any one of the
other particles discovered and added to the "particle zoo" collection.
On this level, our conception of what is natural falls apart.

* For example, referring back to the car example, while driving down the
highway it would seem perfectly natural to identify both our position
and momentum (in classical physics, the product of mass and velocity)
simultaneously. All we have to do is note our position while glancing
at the speedometer. However, in quantum physics, Heisenberg',s Uncertainty
Principle tells us that position and momentum cannot both be measured
simultaneously with a high degree of accuracy. This inaccuracy is not
due to the measuring techniques, but is due to the properties which are
being measured.

We can measure either position or momentum, theoretically, to find the
- precise value for one or the other. But there is no universal test, no
'a omnipotent test capable of reading both values precisely. Many times in

areas outside of quantum physics,- one finds instances in which an omni-
potent test is missing.

In the chapter on examples, for instance, the reader will find that often
in navigation a single lookout will not be able to observe 360 degrees
around the ship. Thus, the captain must rely on reports from several
lookouts, each with a limited field of vision. In this paper, we present
different techniques for dealing with cases where there is no universal
test.
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Another example of a case in quantum physics where one gets results dif-

ferent from what one would expect in a classical situation comes in a
variation of the Stern-Gerlach experiment. In this experiment one passes
a particle through a magnetic field oriented along a given axis. The
particle will deflect a given amount either up or down, depending upon
the spin. For simplicity's sake, let us restrict ourselves to spin state
+1/2 and -1/2. We will call +1/2 "spin up", and -1/2 "spin down."

Let us first pass the particle through an apparatus oriented in a given
axis. We will call it the x-axis. Let us assume the particle is spin

S,'up. Let us now take the particle and pass it through another apparatus
oriented in a direction rotated 90 degrees from the x-axis. We will call
this the y-axis. Since the orientation is different, we could get either
spin up or spin down. Again, let us assume that it is spin up. If we
pass it through another apparatus oriented in the x-direction, we would
expect that it would be spin up, since our apparati are set up simply
as measuring devices. However, as it turns out, the particle could either
be spin up or spin down, a totally non-classical result!

One may ask, "Why do we want to change or challenge a theory which would
* - predict that unexpected outcome to the variation of the Stern-Gerlach

experiment?" The answer is simply that we do not necesssarily want to
change the theory, but be able to explain it from a rigorous mathematical
approach. For throughout the evolution of quantum physics, challenges
have been made to the propriety of many assumptions.

i - In the ]930's, Birkhoff and Von Neumann proposed that quantum theory
should use orthomoular lattice theory along with Hilbert spaces, which
are essentially infinite dimensional inner product spaces. Later, others
suggested that quantum theory need not be based on Hilbert spaces at all.
They argue that Hilbert spaces were used in the beginning since they were
the only infinite dimensional structures developed at the time. In 1956,
Mackey attempted to set down the axiom of quantum logics, but as of today,
the axioms are still incomplete.

The reader can see, then, that there are many unanswered questions in
term of a rigorous mathematical development of quantum physics. Quantum
logicains, empirical scientists concentratinS in qxiantum physics, attempt
to reexamine a field which was first developed from a pragmatic view-
point, and develop it from a logical viewpoint.

That is why we turn to examine logic. The first formalization of logic
took place when George Boole formalized symbolic logic, in which he
established an algebra of logic. Many are familiar with results of

*-.. Boole's work, for all of these results contain a distributive property,
a feature which again is natural to us, for we can observe it in the
real world.

Huntington expanded on Boole's work,and as a result, postulated axioms
for Boolean algebras. In 1936, Stone went one step further to demonstrate
the relationship between Boolean algebras and algebras of sets..

In 1960, Kleindorfer and Abbott, working at the Naval Academy, investi-
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gated the implication connective in a formal logic. Since then Trident
scholars and Trident-like scholars have built on their work and developed
implication algebras. These include Academy graduates such as Pilling,
Kelsy, Heard, and Kimble. Implication algebras are essentially subtrac-
tion algebras, except the symbology and order of writing the variables
are different. The reader will find in Chapters 1 and 2 that subtraction
algebras are important in our development of empirical science. This
importance is due to their relationship to semi-Boolean algebras, which
form the main structure in the development of empirical science by the
Foulis-Randall school.

Foulis and Randall have asserted that empirical scienaeuat arise from
physical observables - results of tests. They also believe that empir-
ical science should be free of dependence on explanations of physical

*events, and that each test should admit "the Boolean notions of con-
junction, disjunction, negation, and so forth. This axiom, then, ex-
plains why semi-Boolean algebras are so important.

*. A large portion of this paper follows the work of Foulis and Randall, and
* certainly none of the work violates the axioms just stated. This paper
*-". is set up in such a way that the theory and applications are separated:

the first six chapters are theoretical, and Chapter 7 is one of examples
and explanations.

Chapter 1 is a chapter which establishes various properties of subtraction

algebras. Some of this work is siilar to work previously done by Naval

Academy midshipmen.

Chapter 2 is one which establishes the equivalence of subtraction alge-
*bras and semi-Boolean algebras. It goes on to discuss a special type
of semi-Boolean algebra called a manual, which Foulis and Randall designed
as a tool in empirical analysis. The term "manual" comes from describing
a manual of instructions which tells what tests may be performed, and
what outcomes to these tests will be allowed.

Many other terms in this chapter, although rigorously defined mathematic-
ally, may lack motivation. An "atom" or "outcome" is siply, an outcome
to a test. Make a test, get an outcome. The idea is that an atom is
an event which cannot be further decomposed into simpler sub-events. A
"test" or "operation" is simply what it says. .And in practice, one writes
a tqt 4p the set of outcomes allowed as a result of performing that test.
An "eyeat" is something that happened as a result of a test, and is made
up of legal outcomes to that test. That is, an event is any set of out-
comes resulting from a single test. Hence, each outcome is itself an
event. At the other extreme, a test is itself a maximal event, the set
of all possible outcomes of some fixed test.

An "operational complement" is simply a complement to an event with respect

'Youlis and Randall, "What are Quantum Logics, and what ought they
to be?", from the Proceedings of the Workshop on Quantum Logic, Ettore
Majorana Centre for Scientific Culture, Ettore, Sicily, Dec. 2-9, 1979,
pp. 9- 10.
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to the operation in which it is contained. Since a single event may oc-
cur as a result of distinct tests, it is possible for distinct events
to to be operational complements of a single event, taken with respect
to differnt tests. Hence, it is natural to call two events "operationally
perspective" if they share a common operational complement. Thus, if one
event occurs, its operational complement will non-occur, so that in turn

-: an operationally perspective event will occur. In this sense, operation-
.- ally perspective means that one event is essentially identical in the

physical world to another event, regardless of the operations in which
p. either is contained.

An event is said to "occur" if when a test is perfomed, the event results
with a probability of 1. On the other hand, an event is said to "non-
occur" if when a test is performed, the probability of the event occur-
ring is 0. So, the reader may see now that these terms are motivated
by the physical world, and yet will note in this chapter that they are
only defined from a mathematician's perspective.

One further note from this chapter is that "DASBAM' is simply shorthand
notation for dominated, atomic, semi-Boolean algebra satisfying condition
M. Dominated, in common terms, means that there is a set of maximal
elements which are exactly the tests. Atomic means that there is a set
of atoms (outcomes). Sometimes we talk about a "DASBA" instead of a
"DASBAM." The reader can probably surmise its meaning.tl.

In Chapter 3 we discuss logics. Logics, very simply, are manuals with
op pairs fused together - considered as a single result. They are called
logics since we can show that in a manual op is an equivalence relation,
and as a result, the logic is comprised of equivalence classes.

In Chapter 4, we look at a particular case of Stone's Representation
*'.- Theorem, which allows us to view the manuals as either Boolean algebras

within each test, or as algebras of sets, This also allows us the
freedom of notation necessary in constructing a computer program which
will check condition M. This program is useful because it saves much
tedium in verifying that some large semi-Boolean algebras are manuals.

Chapter 5 suggests another use of the computer in empirical science.

After defining "weights" or probabilities on a uanual, we seek to find
all allowable states. Through a linear programming technique, we can
find the extreme points of the set of allowable states. This technique
is easily adaptable to the computer.

Finally, in the last chapter of theory, Chapter 6, we switch momentarily
from the Foulis-Randall school to examine some of the work of Aerts and
Piron of the Institute of Theoretical Physics in Geneva, Switzerland.
Though initially their work will seem very different, we will see in the
examples that their work is actually very closely related to the work of
Foulis and Randall.

In the last chapter, we put together several examples to illustrate the
concepts discussed in the first six chapters. Some of these examples
deal with navigation problems, in which several lookouts are stationed
in such a way that not one can see in an entire 360 degree field of view.

7



This is just one possible application of empirical science in a tradi-
tionally classical problem.

Many other areas appear to be fertile for application of empirical science.
Due to the time constraints, though, we have limited the development to
navigation problems. But one point that needs to be-made is that though
empirical science has been developed primarily for interpreting quantum
physics, in this paper we apply it to problems encountered outside this
realm.

The reader is challenged while reading this paper to consider possible
applications to a field of study of interest to himself,



CHAPTER 1: Subtraction Algebras

Perhaps the best way to begin this discussion of empirical science
is to start with the "machinery" - the foundations which allow us to be
certain of the mathematical correctness of our methods. Most fundamental
of the machinery is a background in subtraction algebra.'1 So, this is

" where the discussion begins.

Defn. 1.1 A subtraction algebra is a set S with an operation " " } Vx,y,z C S,
the following three axioms hold:

S) x%(yx) - x

S2) x,(x.y) - y (y-x)

S3) (z~y)%x - (z-x),y

Th. 1.1 x, y C S, (xY)y - xNy

Pf. (x.-y)%y - (xNy)%(y%(x-y)) by S1
M Xy by S

Thm. 1.2 x, y C S, xNx - (yNx)N(y*x)

Pf. x-x - (xN(y-x))\ (x\(y.x)) by Si
- (x,(x(y~x)))- (yx) by S3
- ((yx)%((y\x)*x))\(y\x) by S2
- ((yx)-(y'x))*(y\x) by Thm. 1.1
- (y~x)%(yx) by Thin. 1.1

Th. 1.3 x, y C S, xx - yy

Pf. xx M (y~x)%(yix) by Thm. 1.2
= (y\(y~x))'(y\(yxx)) by Thin. 1.2
- (x-(x~y))\(x\(x~y)) by S2
- (x\y)%(x\y) by Thm. 1.2

i 
o

-" y~y by Thin. 1.2

Defn. 1.2 3o c S ) Yx c S, x-x - o

Thu. 1.4 x c S, xo -x and o-x - o

Pf. xo - x-%(xxx) by Defn. 1.2
x by Si

ox - o0%(x\o) by first part of Thm. 1.4
- o by S1

Tb.. 1.5 Vx, y e S, (x- y)-(y-x) . x-y

Pf. (xy)(yxx) - (x\(yx))Ny by S3Pf= y X\Y 
by S1

Defn. 1.3 Vx, y C S, x 5 y iff x-y = o

: -9
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Thin. 1.6 If a, x e S, a~x = o, xxa = x, then a = o

Pf. a - a%o by Thin. 1.4
= a%(ax) - x~(x~a) by S2

- o by Defn. 1.2

Thin. 1.7 V x, y e S then (xy)%x - o

Pf. (x~y)' x - (x~x),,y by S3
- oky by Defn. 1.2
- o by Thm. 1.4

Defn. 1.4 V x, y £ S, xAy - x,%(x\y). This is pronounced "x meet y."

Thi. 1.8 Vx, y C S, x < y iff xAy - x

Pf. Let x < y. Then x ^ y x(x~y) by Defn. 1.4. x.y - o by Defn. 1.3.
Thus, xAy - x\(x.y) - xNo - x
Let x A y = x. Then x'(x\y) - x by Defn. 1.4. By Theorems 1.6 and 1.7,

xy - o. By Defn. 1.3, x < y. Therefore, X < y iff x A y = x
iff xy - 0.

Thm. 1.9 y~x = o implies that V z e S, (z.x)\(zy) - o

Pf. Let y~x - o, z e S. (z~x)\(zy) - (z\(z\y))\x by S3
- (y'(y\z))\x by S2
- (y'x)% (y'z) by S3
= o\(ylz) - o by Thin. 1.4

Thin. 1.10 Yx, y e S, then x~y - y\x implies that x - y.

Pf. x - x(y~x) by Sl
. xK(x~y) - y\(yx) by S2
M y\(xy) - y by SI

Thm. 1.11 "<" is a partial order.

Pf. () We will show that x < x. x < x iff xx o o, which is true by
Defn. 1.2.

(ii) Next we will show that K < y, y .1 K implies that K - y.
Recall that x < y, y < x means that x%y - o - yx by
Defn. 1.3. Th. 1.10 proves that x - y.

(iii) Finally, we need to show that K < y and y.1 z implies that
x < z. y < z implies that o - x-y : xz by Thin. 1.8.
Sxz > o by Thin. 1.4, which actually says that Vx c S, x > o.
Therefore, o < K%.z < o, which by part (ii) above implies
that x~z - o. By Defn. 1.3, x < z.

Thm; 1.12 z < x iff By e S 3 z - x.y

Pf. Let z < x. K-(KSz) - z'.(z'K) by S2
- z.O by Defn. 1.3
a Z by Thin. 1.4

10



Let z = xy for some y c S. Then z = x~y< x by Thm. 1.7.

Thin. 1.13 x%(x%(xy)) - x~y x, y e S

Pf. x%(x%(x~y)) - (x~y)'((x~y)%x) by S2
- (x%((x.y)%x))\y by S3
- x~y by Thin. 1.7.

Thin. 1.14 xAy is the greatest lower bound of x and y with-respect to <.

Pf. Let z be a lower bound for x and y. Show z < x^y. z < x implies
* that z~x - 0, and x%(x~z) - z. z < y implies that z%y - o, and

y\(y\z) - z.
z < XAy iff z\(xAy) = 0. z%(xAy) z%(x%(x~y)) by Defn. 1.4.

-. (x\(x~z)) (x\(x-y)) by S
(x\(x\(xy)))\(x\z) by S3

= (x'y)\(x'z) by Thm. 1.13
(x%(x~z))\y by S3

-.z,,y - o

Therefore, z < x A y, V z < x, y. X A y is the greatest lower
bound for x and y.

Thin. 1.15 x~y - x iff x A y - O iff yx - y

Pf. Let x\y - x. Then x%(x\y) - 0 - x A y by Definitions 1.3 and 1.4.
Let x A y - o. Then x A y - o - y%(y\x), again by Definitions
1.3 and 1.4. Then since y> y~x > y, y - y\x. Let y~x - y.
Then o - y%(y%x) - x\(x~y) by S2, which implies that x < x~y < x.
Therefore x\y - x.

Thm. 1.16 (OHS - orthomodular law for subtraction) V x, y, a ) x < y < a,
*'- then x - y\(a'x)

Pf. y\(ax) - (y\(yia))%(a\x) by S2
- (a-.(axy))%(a,.x) by S2

(a\(a~x))%(a-y) by S3
= (x'(xa))%(ay) by S2
=x(ay)

x < y implies that a.x > ay, by Thin. 1.9. Using the same theorem,
x - x%(a~x) < x\(axy)
Since x < x(a-y) < x, x - x-(a~y) - y%(a\x)

Thm. 1.17 For z < x and z, x e S, then z%(y~x) - z.

Pf. z < x implies that y'z > y-x, which in turn implies that
z M z%(y~z) < z%(y-x) < z.
Therefore, z - z\(y\x)

Thi. 1.18 For z < x and z, x c S, then (y-z) x -

Pf. (yz)%x - (y\x) z by S3, which says that (y.z)\x < y'x.
We need to. show that y-x < (y\z)%x. (yx)x((y\z)zx) - (yx)%((y\x)\z)
- z'(z\(y~x)) by S3 and S2.
M z\z by Thin. 1.17
M 0. Therefore, (y~z)%x = y\x.

| 5 5 . 5-



Thu. 1.19 Let z < x < y, x, y, z e S. Then (yz)- (x.z) - y\x.

Pf. (yz)%(xz) - (y\(x'z))\z by S3
- (y\(x\(x\(yxz))))\z by Thu. 1.16

(y\((y~z)'((y\z)%x)))\z by S2
- (y((y z)%(yx)))\z by The. 1.18

- (y\z)\((y- z)\(yxx)) by S3
- (y z)\(y\x) by Defn. 1.4
- y\x by Thi. 1.7.

Defn. 1.5 If x < a, we define the relative complement of x with respect
I

to a, x " a~x.

As a result of this definition, Thm. 1.13 can now be read

Xa = ((xa)a)a

Thu. 1.20 (compatibility) x < y < a implies that X1 - xa A y.

±

Pf. x A y (a\x) A y = y%(y%(a-x)) - y~x by Thin. 1.16.

X*

y
Another property we would expect of the relative complement is
that the meet of x and its relative complement would be o.

Thm. 1.21 X Ax -o
a

Pf. A x" - x A (a-x) - x(x%(ax)) - x~x - o
a

Defn. 1.6 Let x, y < e, x, y, e e S. We define x v y - e\((ex)\(y'x)).
x v y is pronounced "x join y."

Note that both x and y must be less than a single element in the
set S in order for the join to exist. In general, the join of
two arbitrary elements does not exist.

Thin. 1.22 If 3 e S P x, y.< e, then x v y is an upper bound for x and y.

Pf. If x v y is an upper bound for x and y, then x, y 4 x v y. By
Theorem 1.8, x < x V y
iff X ^'(x y)- x. x A (x V y) - x A (e%((e~x)%(y~x)))

- (e\((e~x), (y\x))) ((e%-((e\x)\(y\x)))\x)
by Defn. 1.4

- (e-((e-x)-(y-x)))-((ex).((ex). )
by S3

- e%(e~x) by Thu. 1.19
- x by Defn. 1.4 and the assumption
that x < e

Thus, we have shown x < x ' y. We must show y < x v y.

But note the following:

(ex)A(ey) - (e~x)"((e'x) (e~y)) by Defn. 1.4
M (e~x).((e(e~y))%x) by S3
- (ex)- (y~x)

12



But (ex)-%(e-y) - (e-y)\((ey)-(ex)) which, using the above
procedures is equal to (e'y)%(xxy). Therefore,

syA(e%((e~y)%(x~y))) - yA(xvy) - y.

Thm. 1.23 x v y is the least upper bound for x and y, if x v y exists.

Pf. Suppose z e S is an upper bound for x and y. We need to show
that x v y < z. That is, we need to show that (x v y)%z - o.
(x v y)-z -(e-((e-x) (y~x))).z by Defn. 1.6

*- (ez)-((e x).(y x)) by S3
- (ez)%((ex)A(ey)) by the note in the proof of

the preceeding theorem.

* One of the properties of upper bound is that x, y < z. This
implies that e~x, e~y > e~z. Therefore, (e-,x)A(ey) > e'z,
which implies that (ez).((ex)A(ey)) - o. Therefore,
x v y < z Vz C S 3x, y < z.

The following sets of theorems are used to demonstrate that
(e~x)%(y~x) - (e-x)\y, but are useful theorems in themselves.

Thin. 1.24 V x, y, z e S, (z-y).(z'x) - (x-y)\(x\z)

Pf. (z-y)\(zx) - (z-(z'x)) y by S3
- (x\(x~z))\y by S2
- (x~y)\(x-%z) by S3

5We will now use Th. 1.24 to prove the following theorem.

Thin. 1.25 V x, y, z c S (zy)-*x - (z'x)% (y-x)

Pf. First, we will show that (z~y).x < (z',x)\ (y~x)
((z-y),x)-((Z X) (y~x)) - ((z-X),,y)-((z-x)\(y-x)) by S3

- ((z-x)%((z x)%(y\x)))Ny by S3
((yx)- ((y~x)\(zhx))).y by S2
((y\x)\y) (y x)\(z .x)) by S3
o ((yx)\(z~x)) by Thin. 1.7
o by Thin. 1.4

Now we will show that (zx)-.(y-.x) < (z~y)\x.
((z-x)%(y-x))%((zxy)%x) - ((z-x)N((zx)y))%(yx) by S3

- (((z-x),x)%((z-x)\y))-(y~x) by Thin. 1.1
- ((yx)(y\(z-x)))\(y\x) by S5

o by Thin. 1.7

Thi. 1.26 V x, y, z c S z%(z%(yx)) - (z\(zy))%x

Pf. z%(z%(yx)) - (y~x)%((yx)%z) by S2
- (y.x)N ((Yz)%x) by S3
- (y%(y\z)).x by Thin. 1.25
- (z-(z\y))%x by S2

Thm. 1.27 (Isotone) x < y + xz < yz

13



K%
Pf. (x-z)%(yz) - (xy)z by Thin. 1.25

W O'Z since xy - o
=0.

* Therefore, x'z < y-z.

" Thm. 1.28 If x v y exists, x, y < e, then x v y -e((ex)-y).

Pf. By Defn. 1.6, x v y a e%((ex)N(y~x)). By Thin. 1.25,
x v y = e((ex)%y).

The above definitions and theorems were presented so that we
can prove theorems relating subtraction algebras to structures
that we wish to study. This will be dealt with in the next
chapter.

14



CHAPTER 2: Manuals

One structure which is extremely useful in the field of empirical
science is the semi-Boolean algebra. Thus, in this chapter we will prove
the equivalence of subtraction algebras and semi-Boolean algebras. After
this is done, we will go on and define a manual, which is'a special semi-
Boolean algebra which Foulis and Randall first defined in their search for
a mathematical structure. Finally, we will prove a few theorems regarding
which semi-Boolean structures are manuals, and which are not.

Defn. 2.1 A Boolean algebra is a set B with a partial order, closed under

greatest lower bound (A) and least upper bound (V), with a
smallest element (o) and a greatest element (1). Each element
has its own relative complement with respect to 1 (known as its
complement) which lies in set B. In addition, under V and A
set B must satisfy these associative, commutative, idempotent,
absorptive, distributive, and DeMorgan laws.

Defn. 2.2 A meet semi-lattice is a set with a partial order such that
meets are uniquely defined for every pair of elements.

Defn. 2.3 (a) An ideal I of a'meet semi-lattice is a subset S such that

if x, y s I then

1) if z < x, then z e I

2) if x, y e I and if x v y exists, then x v y e I.

S(b) A filter F is a subset of a meet semi-lattice such that If

x e F and

1) if x< z, then z e F

2) if x, y e F, then x A y C F.

3 Defn. 2.4 A principal ideal I is an ideal in which 3 x e I such that
y < x for every x e I.

Defn. 2.5 A semi-Boolean algebra is a meet semi-lattice in which every
principal ideal is a Boolean algebra.

Thu. 2.1 A subtraction algebra is a semi-Boolean algebra.

Pf. In the previous chapter we showed that the operations of " V" and
,A," defined in terms of a subtraction operation, are respectively
the least upper bound and the greatest lower bound. We have already
defined a partial order. Clearly there is a least element, x%x - o,
and in each principal ideal the greatest element exists by definition.

*. - Each element has its own complement, the relative complement with
respect to the greatest element, as defined in the previous chapter.
Furthermore, the commutative laws (a A b - b A a and a V b - b V a),
the associative laws (a A (b A c) - (a A b) A c and a V (b vc)

= (a v b) v c), and the idempotent laws (x v x . x - x A x) are
satisfied by the properties of the greatest lower bound and least
upper bound. One of the DeMorgan laws follows directly from the
definition of "w" found in the previous chapter: where e is least
upper bound of principal ideal,

-15
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(x V y) e%(x v y) e%(e%((ex),(y,,x)))e ef( (e- x),(y,,x))

(ex)% (e (e-y))%x)

(e-x) ((e~x) • (e~y))

(ex)A(e'y)

. JLi 1£± . * e* ±. e
(X A y) - (X..Ay )-(zivyl)" x

e " ee e e e ee eye

We will now prove the distributive laws.

We want to show that x v(y A z) - (x V y)^(x V z).
Let r - (x v y)A(x v z). Since x < x v y, x V z, then
x< (x V y)A(x v z). Note also that Y A Z< yyxv y
and y A z < z < x v z. So, again y A z < r. Since x,
y A z < r, x v(y Az) 4 r - (x v y)A(x v-7z). Now we need
to show xv(y A z) > r. Let a - x v z. r < 9, and so
r'x < S~x.

Since (sx)%z - o - (sz)%x, we have s'x - (s.((sz)x)%x
(s%(sz))%x - zx < z. Therefore, r~x < s'x = z~x < z.
Similarly, we can show that r~x < y. Therefore, r%x < y A Z,

and thus (rx)%(yz) a d. r-r'o = r%((rix)%(yAz)) -

x v(y A z), by definition of "v".
Therefore x v (y~z) - (xvy)A(xVz).

To show the other distributive property, we use the DeMorgan Laws:

x ̂ (y v z) - x Ay Y - (x V (y V Z ) ) (x V(y AZ))

- ((x v yI)A(x' VzI)) I a ((X A Y) LA(XAZ) I)I
-i Z) II

. (x A y) v (x A

S(x A y)(x A Z).

The absorptive laws are simply consequences of the distributive laws.

Now that we have shown that a subtraction algebra is a semi-Boolean
algebra, we would like to show that a semi-Boolean algebra is a
subtraction algebra.

Thm. 2.2 xy - (x A Y)x
x

Pf. (X A y)' - x'(x A y) - x(x-(xy)), which is x%y by Defn. 1.5
and Thx 1.13.

Thu. 2.3 A seti-Boolean algebra is a subtraction algebra.

Pf. We will show 51, S2, and S3.
i

(Sl) x,(yx) - (x A(y,,x))x - (x A(y%(x A y))'

(x .A (X A y)j y - ((X A y)A(X A y) y) - o 0- x

(52) x,(x~y) - (x ̂ (x A y) x V (x A y) - o (xA y) A X A Y.
x x x

Since X A Y is comutative, x'(xy) -Ydy%x)

16
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(S3) (xy)%z - ((xAY) x z)xy by Thu. 2.2. Note that

(x AY) x(xAy) - xzy. Also, (xy)Az < x~y < x.
By the compatibility theorem 1.20 in the previous

chapter, ((xy) A - ((x-y)A z) AA (xy)

x ((x'Y) V (z) )A (xy)

((xAy) N (x Az) ) (x AY)

- ((xAy)A (xAY))V((XA Z)X A(XA y) 1 )
x x

by the distributive law

0 ((X AZ) I(xAy) ). (xAZ)I A(XAy)1
x ^ xzx

Since this is symmetric in y and z, we have (x-y)%z - (x'.z)%y.

What we have just demonstrated is that when we are talking about
a semi-Boolean algebra, we can talk about a subtraction algebra,
and vice-verse. This is useful in empirical logic, because the
structures which the Foulis-Randall school uses are special types
of semi-Boolean algebras. We can use some of the properties of
subtraction algebras in dealing with these structures.

Now that the groundwork has been laid in subtraction and semi-
Boolean algebras, we can begin developing the mathematics of

: empirical science. Let us, as usual, begin with some definitions.

Defn. 2.6 A dominating set is a set M such that every x is contained in an
e, a cMand if 3x in the algebra such that e < x then x - e.

Defn. 2.7 An operational complement to an element x is an element y such
that x, y < e e M and e~x - y. An alternate definition is to say
that x A y - o and x v y e C M. We write x oc y,

Defn. 2.8 An element x is said to be operationally perspective to another
element if they are operational complements to the same element,
w: that is, x oc w, w oc y, implies that x op y. We can
also say that x op y iff e, f C M, x < e, y < f, such that
ex - fy.

. Defn. 2.9 In the above definition, we call w the center of perspectivIty for
x and y.

Ths. 2.4 Let e, f s M. Then ef oc c ^ f.
a'.

Pf. ef < e, a A f < a. e%(eE) A • Af by definition.

Cor. 2.4 (a) ef op f'e

Thu. 2.5 If z < a A f, 3K, such that ef < x < e such that x oc z.

Pf. Let x - eaz. Clearly x -ez < e. Since z < ea f < e,
x " e >-- e%(elf) - ef.

17
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The above theorem states each element in the ideal of the
meet of two dominating elements e and f isa center of
perspectivity for elements in the filters of e-f and fe.

Thin. 2.6 If e > x > ef, then 3 z < e A f such that e%x - z

Pf. e~x < e A f iff (ex)%(e A f) - .(e'.x)%(e A f)
e - )( C f))

Since x > e~f, then e~x < e (e~f), which implies
(e~x)%(e x) > (e~x) (e %C( f)). Since o > (e'x)(eAf) > ,
o - (ex)%(eAf) and e~x < e A f,-

Cor. 2.6(a) There exists an element y > fie such that x op y.

Pf. Thin. 2.5 and Thm. 2.6.

Thu. 2.7 Operational complements with respect to a single maximal
element (dominating) are unique.

Pf. Assume zi, z 2 < e, where e~z 1  e'z2. Then e%(ez 1 )

e%(e~z2), which implies that z eA1 e ^ z2 a z2 .

Cor. 2.7(a) For each element in the filter generated by the difference e-f
of to maximal elements e and f, there is one and only one
element oc to it in the ideal of e A f and one and only one
element op to it in the filter of fe. Further, these are
bijective relations.

Pf. Thms. 2.5, 2.6, and 2.7.

Thu. 2.8 If x oc y, x, y < e e M, then e'x oc e%y.

Pf. e, (ex) - ex - x - e% y.

Thu. 2.9 If x op y, then x-y op yx.

Pf. x op y implies that .e, f e M )x < e, y < f and e'x f-y.
This implies that (e'x) v (xAy) - (fiy) V (x A y). We want to
show that x'y oc (ex) v (x ̂  y) oc y~x. But [(e-x) v(x A y)] V(xy)
- (Cx) V x - e. Also [ (ex) , (X A y) ] A (xy)] [(ex) A (xy) ] v
[(x A y) A(x-y)] - [(eix) v(xy)]v o < (ex)vx - o. Therefore,
[(ex) v (xAy)] oc x~y. Similarly for y-x oc [(0ix) V (x A y)].
So x\y op yx.

Thu. 2.10 If x oc y, x, y < e e M, then e~x - y.

Pf. If x oc y, 3f e 13 fix - y. By definition, x, y < f. Let
ex - z. e'z op f..y implies that e\(e'z) - f (fy). Therefore,
e A z - f A y or z - y. So then e'x - fx. x v (ex) = x v(f\x),
and as a result, e - f.

The above theorem shows us that if two elements are oc and are
contained in the same maximal element, then they are oc viathat maximal element.

18



Defn. 2.10 A meet semi-lattice is dominated if 3 a dominating set.

Defn. 2.11 A meet semi-lattice is atomic if 3 a set Aof atoms in the meet
semi-lattice A subh that a e A, x e A, x < a implies that either
x - a or x - o, and every element, except o contains an atom.

Defn. 2.12 Condition H is satisfied if Vx, y, z e A )x oc y, y op z,
then x oc z. It is important in our study of empirical science
for condition M to be satisfied, because we need this property

mto ensure that op is transitive. The need for this will become
more apparent when we look at example problems.

Defn. 2.13 A dominated, atomic, semi-Boolean algebra satisfying condition
M (DASBAM) is a manual.

Defn. 2.14 A test or operation is a maximal element in a manual.

Defn. 2.15 An atom or outcome is an element in the atomic set.

. Defn. 2.16 An event is an element of the manual.

SFrom Defn. 2.14, we can see where the term "operational com-
plement" gets its name. It is derived from the fact that they
are complements relative to an operation. "Operationally

* 'perspective" means that two events are the same, regardless
of which operation gives you that interpretation.

We will now go on to describe different types of manuals which
are of interest.

Defn. 2.17 Define a direct product on DASBA's as {(a,b)la e A, b c 8},
where A, B are DASBA's. Let the subtraction be defined as
follows:

* (xl' x2)%(yl'y2) - (xl'y1, x2 Y2), x1 s Y1 e A, x2, Y2 c 8.

Thm. 2.11 The direct product of two manuals is a manual.
Pf. The first requirement of a manual is that it be dominated. We

propose that the dominating set be (e1 , e2) such that e e H A,

- e2 e H. Let (xlv x2 ) e A x 8 such that (e1, e2 )'(x 1, x2) = (o,o),

the "zero" of our new structure. This means that el x1 o,

* . e2 x2 - o. Since A and 8 are dominated, el\x I - o implies that

a - x1 , and e2 x2 - o implies that e1 =x2. Therefore our

dominating set consists of MA X 8.

The next thing we need to show is that we have an atomic set.

We propose that (o, a2) and (a1 o), a1 e AA and a2 e A8  are

then only atoms. Let (x1 , x2) . (o, a2). Then (xI, x2)%(o, a2)

- (o, o), which means that xlo - o and x2ta 2 - o. This implies

that x I " o and x2 - a2 , since a, c A8 . And thus (o, a2) 8 Ax8

We can show similarly that (a1 , o) e AAxB .
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Next, we need to show that our structure is a semi-Boolean
algebra. We will do this by varifying the axioms of a sub-

'.-.2"

"..:FNall, we need to show that our n structure s a isfi-Boes
' conditionra. WeToi do this we needyi tohxpoe fxirmsth ef iitions

traction algebra, Let x 1, y z, e A, x2 , Y2. z2 C .

(e-. 2)(Xl 2 )((yly 2) )) T is xt2r(Y2eX2)) = (x x2a

caS2) (xex 2),((X,X2) o(yly2)) (xl o(xpyl),x2 (x2 y2)). o l(YX)

ThsY2 (Y2x ) (Y ' Y2)  ((Ylhw Ytt (2) o (x,  y))

mpliS3) ((zlhz (xx2)) \ (yz'Y 2 ) = s(( z nc x Y1' (z2 \x 2) y2 )
i!! ziYl)'xl ' (z2" 2)" x2)

=((Zl Z2). (Yl,y2))\ (XlX 2 )

Finally, we need to show that our new structure satisfies
condition 1 . To do thi we need to explore first the definitions
of oc and op in A x 8. Let x, zy , x2,Y2,Z 2 C 8

(2,X2)oc(ylY 2 ) implies that 3(ele2) e MAXs such that::(else 2)\(XlX 2)=(ylY2) . This is true iff ei~x1 - Yi, and

4) if x, yzcAtexyan y an x mle ta

i 2 c Y2' whch on A and 8 means xI  l of 2 oc Y2
en..9 Since op wasti efined as two events which share a common oc, we

can also see that (XeaX2) op (yly2) eff st1 O l and x 2 op 72"
Thus, it is trivial to show that (Xi wh 2) oc (yleY2)r (ylmY2) op (o s2)
implies that (xlx2) op (z , z2 since x 1 o p z x 2 op z 2 in

A and 8 respectively.

Defn. 2.18 Given a manual A with a principal ideal I(a), let Ag be the

extension of A obtained by adding to A an element x1 for eachN. x c I(a) under the following constraints:

1) if x< y, x,, y e I (a), then x 1 < Yl' X1' Yl c Ag

2) if x e I(a), then x < x1
3) if x < yq x, y e A, then x < y in Ag

S4) if x, y, z e Ag , then x< y and y <r. implies that x < z.

Ag is called a ghost of the principal ideal of a in A.

-2-.19 t is ghostig e vy .maximal principal ideal. That

Doffn. 2.20 A Dacey mnual is a manual in which every maximal element e contains
an atom a a such that if e, f e M. e # f, then a e # af, where

a e a[ e A, a e <eo and af < f.

"Thu. 2.12 A dacification of a dominated, atomic, semi-Boolean algebra
~(DASBA) is a manual.
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Pf. Ghosting tests leaves us with a new dominated, atomic, semi-
Boolean algebra. We must show that the dacification satisfies
condition M. In the dacification, let x oc w oc y1. We will
use the subscript D to signify the dacled DASA, and the sub-
script A to signify the original DASBA. x1 _1 eI C M,
Y1  f 1 CM eI  e v ae . e Ma , ae  Similarly, we

define fl" wI cannot equal w v ae or w v af, w r A, since

a e 0 af and wI _< eV!, f. Therefore, w - w. That is, wI was

in the original DASBA. Thus, x- x v ae, Yl M y vaft x. y e A.

Is y, an operational complement to anything but wl? The answer

is no, since af is contained in one and only one test, fl"

Therefore, condition M is trivially satisfied, since w1 is the

only event oc to Y1, and we already have x, oc w1 .

Defn. 2.21 A classical manual is a manual in which there is only one element
in the dominating set.

A classical manual is simply a Boolean algebra.

Defn. 2.22 A semi-classical DASBA is one in which the intersection of principal
ideals of any two events in the dominating set is 0.

In the lattice drawing, a semi-classical DASBA appears to be two
or more Boolean algebras which meet at 0.

Thin. 2.13 A semi-classical DASBA is a manual.

Pf. We just need to show the DASBA satisfies condition M. Note that
the only op pairs in the structure are tests, since 0 is the
only element in e A f, e, f e M. Therefore, proving condition M
is rather trivial, since we only need to look at something of the
following form: 0 oc e, e op f, which clearly satisfies condition
M because 0 oc f.

Thm. 2.14 Any DASBA with one or two tests is a manual

-- Pf. With one test, there are no op pairs, so condition M is vacuously
satisfied. With two tests, if we have x oc y and y op z, tben
there exists e, f e M such that ey - f%z - w, where w < e, f.
y < e, and therefore y f since if it were, y would then be in
the filter of e'f, and te ideal of eAf. Thus, e%y - x - w, by

4Theorem 2.7.

Theorems 2.12, 2.13, and 2.14 simply give us an easy way to
recognize some DASBAs as manuals.
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CHAPTER 3: Logics

This chapter is one which discusses "op logics," or "logics" for short.
Logics exhibit some properties which are useful in empirical science. For
example, in a logic, equivalent events from the manual are identified. That
is to say, if two events are operationally perspective, they share the same
operational complement. So if x-oc y, and w occurs (that is, when the test
is performed we are assured of getting w), then x and y non-occur simultaneously.
In this manner, x and y are equivalent, and in fact we will show that op is
an equivalence relation in a manual. We will also demonstrate some properties
exhibited by a logic.

Thm. 3.1 "op" is an equivalence relation in a manual.

Pf. (i) x op x, since x oc e x for any e e M such that x < e.

(ii) x op y implies that y op x by symmetry of Definition 2.8.

(iii) Let x op y and y op z. y op z implies that there exists
a w such that y oc w oc z. Sinee we are in a manual,
condition M says that x oc w. Since w oc z, x op z.

Defn. 3.1 Let x denote the set of events in the manual such that y E x
iff y op x.

Thus, x is the equivalence class of x and x op y iff x =y.

Defn. 3.2 x < y iff for every xI e x there exists y1 e y such that xI < yI.
Thm. 3.2 xlx 2 < y and x, op x2 implies that x, 1*2-

Pf. If x1 x2 < y, there exists an e e M such that x < y < e.

x oc ex I and x op x2 implies that e.xl oc x2. This implies

that there exists an f c M such that x2 < f and ex 1 = fx 2.

x 2 v (e~x1 ) - f and x2 A (e'x I ) - 0. x2 < e and (e'xI) < e.

Therefore f < e. In a manual, one test cannot be contained in
another, so f - e. Therefore e~x1 - e~x2, which implies that
-1 x 2"

This theorem tells us that two events in x do not share the

same y in y, x < y, such that y is greater than both of them.

Thin. 3.3 " <" is a partial order in the logic.

Pf. (i) x < x, since x e x and x < x.

(ii) x < y and y < x says that for every x1 e x there exists

.Y y such that x1 < yI, and for every Y2 c y there

exists an x2  x such that Y2 < x2 " In the manual,

x 1 < yI. Also, Y1  x2 C x. There exists an e e M

such that x1 - Yl < x2 
< e. But x op x2. By Theorem

3.2, x1 = X2. Therefore x = y.
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(iii) Let x < y and y < z. Then for every xI  x there exists

Yl c y such that x < yI. For this yl £ y, there exists

z c z such that Y, < zi. Therefore, x, < z1 for every
X1 C X.

Therefore, we have established that the logic is a partially
ordered set. We will use Theorem 3.4 to prove Theorem 3.5.

Thm. 3.4 Let x v z op y v z and x z = y A z - 0. Then x op y.

Pf. x v z op y v z implies that there exists e, f E M such that
x v z < e, y v z < f and w = eN(x v z) = f%(y v z). w, z < e, f,
which implies that w, z < e A f, which in turn shows us that
w v z < e A f. e - w v (x v z) = (w v z)vx and
f - w v (y v z) = (w v z) V y. Note that (x v z) A w = 0 =

(y v z) A w. By the distributive law, this says that
(w A x) V (w A z) - 0 = (w A y) V (w A z), which says that
w A x - w A y - wA z - 0. (w V z) I x = (w A x) v (z A x)
- 0 v 0 - 0. Thus, x oc w v z oc y, and as a result, x op y.

Thin. 3.5 x op y, u < x, v < y, and u op v implies x~u op y % v.

Pf. x op y implies that there exists an e e M, x < e, and an
f e M, y < f such that ex - f~y - w, where e - x v w and
f =y v w.

x - u v (x-u), where uA(Xu) - 0. e -, uv(x.u) v w, where
u A w M 0 and (xu) A w - 0, since x A w - 0. Similarly,
f - vv(yv) V w. Therefore, u oc (x'u) v w. Since u op v,
and we are in a manual, v oc (x~u) V w.

Therefore (x-u)v w op (yv) vw. By Thin. 3.4, x'u op y'v.

* Defn. 3.4 If x < y, then we define yx - yx.
The reader will note that this definition was motivated y

Thin. 3.5 which says that if x < y, xI , x2 £ x, Y1 9 Y2 £ y,

X,< yl and x2 < Y2 ' then ylxl op yX 2 . If e M, we will

denote e by writing 1. This makes sense, because all of the
tests are in the same op class, since each is an operational
complement to 0. The equivalence class of 0, 0, consists only
of the null event, 0.

-1

" Defn. 3.5 The orthocomplement of x is l-x. We denote this as x

This makes good sense, as it is motivated by Definition 3.4.

Thin. 3.6 x x

Pf. x - (lx),. 1%x - e -- for some e c M such that x < e.
e-x - e-x. Since e'x < e, 1 ex- e%(e-.x) -x.
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We have shown that the op logic has a least element and a
greatest element, the logic has a partial order defined on
it, and it also has a subtraction operation defined for one
element contained in another. Finally, each element has a
unique orthocomplement.

In any case, the main point that should be made about op
logics is that in the logic, events which are essentially
identical in physical interpretation, but different in the
way in which the outcomes are recorded in the manual, are
identified. This is appealing to one's intuition, since
it seems unreasonable for identical occurances in the physical
domain to be recorded as independent events.

Logics are partially ordered sets, but they do not always
form lattices, and even when they do form lattices, they are
not necessarily distributive. Later in Chapter 7, we will
see some examples of logics.

4
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CHAPTER 4: Notation and Computers

Up until this point, we have discussed manuals as semi-Boolean algebras.
We have not really driven home the point that in the applicaton of the
theory, maximal elements in the manual really represent physical exper-
iments. Since this is the case, Stone's Representation Theorem, which
shows that a Boolean algebra is equivalent to an algebra of sets, tells
us that a test can be expressed as the set of its allowable outcomes.
In this sense, then, we can talk of one event being less than another,

por we can say that one event is contained in another.

Later in the chapter, we discuss a computer program which benefits from
this clarification of interpretations. The program itself is extremely
useful, in that it allows us to decide when a dominated, atomic, semi-
Boolean algebra is a manual. Previous to this program, all verification
was done by hand.

. Defn. 4.1 Ax - {a I aA, a * x where x is an event and A is the
set of atoms in the manual. Ax is actially- "the set of atoms
contained in x."

Defn. 4.2 Mx - {e I eeM, xiS el where x is an event and M is the
set of maximal elements in the manual. Mx is actually "the
set of tests containing x."

Defn. 4.3 Dx - {a I ate, eeMOaeA} ftafipx is an event. 5 is spoken
as the "domain of x."

Thu. 4.1 x 6y implies that M Mx.
Pf. K - {e I ecM, y 6 el. But since x 4 y, then x e for every

e such that y t e. Hence, myS Mx .

Thu. 4.2 x & y implies that AxS Ay.

Pf. An {a I aeA, a * x}. But for every a such that a 6-x, ai- y.
efore, Ax Ay.

Thm. 4.3 x 6 y implies that DyS Dx.

Pf. This result follows directly from Theorems 4.1 and 4.2.

Thu. 4.4 If aj xy, a 0 0, then a _ x and a y.

Pf. Let a o xy tL x. Assume a e y. Then a * x r y. Therefore,
a .6 (x'y) A (x A y) - 0. This is a contradiction, so a ty.

Thu. 4.5 (Stone's Representation Theorem) Axy - A.

Pf. aeAxy implies that a • x.y, which in turn implies that a Y x
and a y, by Thm. 4.4. Therefore, a E Ax and a F A% (a Ay).

So a Ax n (AA ) - A%Ay.
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Cor. 4.SA Ax y a Ax % .

Cor. 4.5B Ax 4 y Ax n Ay.
These follow from the fact that a subtraction algebra defines a semi-

Boolean algebra.

Thu. 4.6 H, . 7 S ,y.

Pf. Let e C Mx-HM. That is, x e, y e. xy t x !j e, and
therefore e Mxy.

3 Thu. 4.7 M.1  - MMY

Pf. Let e Mx , y. Then x vy e, which implies that x :E e and
y t e. Therefore, since e £ Mx and e c My, e £ Mx r" My.

Let e e Mx j My. Then e c l and e C My. This says that x e e
and y _ e. This in turn implies that x v y * e, and therefore
e £ MxvMY,.

Thu. 4.8 x Q MY S_ x^, y.

Let e e Mx % My. Either x 4e •or y 1_e. Without loss of
generality, we can assume that x e. Since x y x !I e,
then e c x A y.

Cor. 4.8A Dx-Dy Dxy.

Cor. 4.8B Dx v y - Dx n Dy.

Cor. 4.8C Dx J Dy S DX A y.

Note that the domains follow the exact same rules as maximals by Stone's
Representation Theorem.

Thm. 4.9 x v y exists iff Mx n My 0 0.

Pf. Let x v y exist. There exists an e c M such that x v y * e.
x, y !E x v y % e, and as a result e C M x  My. Let HxfnlMyO 01
This implies that there exists an ee M such that e £ Hx ..
Therefore, e C Mx, .. x, y 6 a then Implies that x v y e
since we have a Boolean algebra.

Defn. 4.4 Ay: I{a I a C A, a Ay - 0, a vy ie, • M).

Thu. 4.10 A7 " Dy-A y .

Pf. Let a £ A; . We need to show that a e D and a Ay. But a A - 0,
which means that a 6 y, or a A7. Furthermore, a v y ie for
some e c M. Since e c My a a I e, then a £ Dy.

Let 8 DA Then a C Dy and a C Ay. Hence there exists an
e a M suc that a . e. Therefore, a, y E e, and a vy " e.
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Since a eAy, a A Y- 0. Thus, a e Ay.

Now that we have completed the development of the notation, we will discuss3 what the program, MANUALl does.

The computer program, MANUALI, was written in order that we might have a
quick, easy method of verifying that a dominated, atomic, semi-Boolean
algebra is a manual. Chapter 2 suggested that in some cases we could
determine this very easily if it met one of several qualifications. For
example, we will have a manual if the DASBA has only one or two tests, or
if it is a dacification of another DASBA. However, in a majority of cases,
it will ndtbe readily apparent if the DASBA is a manual. And if we have
a DASBA with more than a few tests or atoms, checking all possible com-
binations x oc y and y op z can be tedious, if not nearly impossible.
Fortunately, the computer can be taught to do these things very nicely.

A listing of MANUALl is found in the Appendix, along with several sample
runs. It was written in Fortran, though any computer language which had
Boolean operations could have been used. To operate the program, we input
the outcomes of one test into the computer, using alphanumeric symbols.
The program itself can only handle the letters A to Z and the numbers 0 to
9; though, with modifications could handle any, character. The program
is also limited to 36 bits, though, with a little ingenuity, one could
extend this limit.

The alphanumeric representation is imediately converted to a 36 digit
binary representation, and in this representation we do all of the real
work of this program. Since all decimal numbers are stored in binary, we
can take advantage of this feature in generating the power set of the set
of outcomes contained in a test. For example, if there are n atoms in
a test, we take the binary form of the integers 0 to 2n-1, and allow the
corresponding event to contain the atoms that are in the same position
as the lVs. Oxfderadpositidn are extremely important at this stage
of the program.

The next thing that the program does is to generate the operational com-
plement of each event with respect to the test. It does this by using
the "exclusive or", the negation of the biconditional, with the test and
the event. At this point, the events have been stored in one table, and
the respective oc in a corresponding position in another table.

Once each test has been input and the two tables have been generated, the
computer searches the oc table for an event which is listed twice.
Their corresponding events are an op pair, and are listed in corresponding
positions in two separate tables.

After this is completed, the program begins to check condition M. It does

Stihes by searching several tables at once. First it checks for an event
ihe oc table equal to an event in one of the op tables. Once we have

a match, it searches the event table for all events identical to the event
in the event column corresponding to the matched event in the oc column.

* It does this to check to see if the corresponding event in the event
column is oc to the event in the second of the op tables corresponding
to the matched op event. If it is oc, we continue the process. If it is

* not, we store the counter-example in three tables, and continue the search
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to find more counter-examples.

The program finally tells us whether or not we have a manual, and gives
us sevral print out options, including an event/oc table and an op pair
table. The program will also compute the "perp" of each event, and check
the "coherence" condition, but these features are not relevant to this paper,
and will not be discussed here.

Before printing is done, the binary representation is converted to the
alphanumeric representation. Since each position of the 36-place con-
version key has a corresponding numerical value equal to 2 36-k, where
k is the position, we simply use numerical comparison and arithmetic

-' subtraction to find the desired event in the form which we would re-

cognize.
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CHAPTER 5: Weights and States

In the previous four chapters, we have dealt with algebras, manuals, and
3logics. One thing that we have yet to discuss is some type of probability

distribution on the manuals and logics. This is one area in empirical
science which has been developed by many of the leaders in the field.

• :It Is logical to discuss probabilities, since in classical manuals, one
is accustomed to discussing the likelihood of various outcomes to a

* single experiment. Why, then, should we not discuss these probabilities,
or "weights",on:aaff than one experiment? There is no reason, and that
is exactly what we will attempt to do.

Defn. 5.1 A weight is a real value w, 0 _5 w 4 1, assigned to an event
in the manual.

Defn. 5.2 If n is the number of atoms in a manual, a state is an n-tuple
assigning weights to all n atoms under the following conditions;

1) The weight of each eveit is equal to the sum of the
weights of the atoms contained in it

2) The weight of each test is 1

In a very real sense, a weight is equivalent to what we would think it
• to be in terms of classical probability theory, formalized originally by

Komolgorov. A state is simply a consistent way of assigning weights so
that the sum of the weights assigned to the outcomes of a given experiment
equals 1. This is because if the experiment were performed alone, classi-
cal theory would not permit this value to exceed i, but woul6 allow it
only to equal 1.

Defn. 5.3 A pure state is a state which cannot be expressed as a convex
linear combination of any of the other states., That is to say,
it is an extreme point of the convex hull of allowable solutions.

IIf we can find every pure state, then we can express all states as convex
combinations of pure states. Thus, it would be good to find these pure
states, so that we will know all about allowable states.

* From the constraints which are set down for a state in Defintion 5.2, we
can find extreme point solutions by using techniques borrowed from the
simplex method in linear programming. The rest of the development in
this chapter is taken form Gass's Linear Programming, third edition.' The
theorems will be stated without proof, with only their uses being cited.

* . Defn. 5.4 A feasible solution to the linear programming problem is an
n-tuple in which each of the components is non-negative, and
is a solution to a linear system of m equations and n unknowns.

In a manual with r tests and n atoms, we have r equations with the con-
straints that the sum of the atoms in each test is equal to 1. In addition,
we have the constraint that the weight of each of the n atoms li.e between

*_ 0 and 1. However, we should note that one of the conditions of a feasible
solution is that each component is non-negative. In addition, each set
of atoms in a test sums to 1. Therefore, we do not need the second set
of n constraints, since 0 *w tl has been satisfied by the first r equa-
tions. Therefore, r - m, and our system of m equations and n unknowns
consists of summing the atoms in each test, so that they are equal to 1.

aI
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Defn. 5.5 A basic solution to a system of linear- constraints as described
in the previous definition is obtained by setting n-m variables
equal. to zero, and solving the remaining m x m augmented matrix.
This assumes that the determinant is non-zero.

Thm. 5.1 The set of all feasible solutions to the linear programing
problem is a convex set.

Thu. 5.2 If a set of k . m vectors P1 , Pk can be found that is
linearly independent and such that xlPl + . . . + xkP= PO
and all xt - 0, then the point X - (xl, . . . , xk, 0.. . , 0)
is an extreme point of the convex set of feasible solutions.
Here X is an n-dimensional vector whose last n-k elements are 0.

Thm. 5.3 Associated with every extreme point of the convex hull of
solutions is a set of m linearly independent vectors from the
given set P1 , . Pn"

Thu. 5.4 X - (xi, • • • , xn) is an extreme point of the convex hull iff
the positive x1 are coefficients of linearly independent vectors
Pi in xJP P0"

Gass summnarizes these pertinent theorems by saying that
1) Every basic, feasible solution corresponds to an extreme point of

the convex hull
2) Every extreme point of the convex hull of solutions has a line-

arly independent vectors of the given set of n associated with it.

When we get to the chapter of examples, we will demonstrate how to use
these results in a practical problem, and even suggest how a computer
might be utilized in finding each of the pure states.
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CHAPTER 6: Properties, States, and Questions

After studying logics, manuals, and weight, it became apparent that we
were lacking a means of insight into these systems beyond what we had
already attained, or these systems were simply building blocks - means
of interpretation - that were pointing toward some better means of inter-
pretation. Event though the logics and manuals told us much about the
interaction of tests, it seemed that there should be more: though what
that more should have been was difficult to describe. Nevertheless, in

p the search for understanding, one simply desired to know more than we did.

At that point, at the recommendation of Foulis and Randall, we took a
look at a doctoral thesis by Aerts entitled The One and the Many? Aerts
was a student of Constantin Piron, director of the Institute of Theoreti-
cal Physics in Geneva, who was working with Foulis and Randall at khe
time, each of them trying to come to terms with the other's work. It
seems that they more or less have been doing the same things, though
similar terms had different meanings. %hat our understanding of Piron'
and Aerts' work in relaton to the work of Foulis and Randall is found
in this chapter.

Defn. 6.1 An entity is an object or system on which tests may be per-
formed.

Defn. 6.2 A question is a means of making a test, the result of which
can be interreted either "ves" or "no."

I Defn. 6.3 Question a is said to be stonxer than question S (___)
i 1ff wheneyar a is "true", 8 is "true."

One will find that " " exhibits the properties of a preorder. That is,
() a .4 a and (ii) if a4. 8 and 0 A. y, then a -. y. One can verify
this simply by following through the definition of ".

Defn. 6.4 Question a is equivalent to question B (a = 8) iff a < B
and a -.

As a result of this definition, ".g" is a partial order. That is, in
addition to the two conditions satisfied as a preorder, it also now satis-
fies that a -4 8, 8 -< a implies that a - 8.

Defn. 6.5 A property is an equivalence class of questions.

Defn. 6.6 A property a is actual if there exists a question aca such
that a is true. If not, a is said to be potential.

Defn. 6.7 An Aerts' state is the collection of actual properties of an
entity.

Usually we will call an Aerts' state simply a state. This is not to be
confused with the term "state" used in the previous chapter. Usually,
it will be clear from context which state that we are talking about.
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Defn. 6.8 A product of questions is a set of two or more questions
of which only one is chosen to be tested. This is written
as a-8 or Hai, where a, 8, and ai are questions.

In other words, for a product of questions to be true, whichever question
is chosen to be tested must be true. This does not mean that we must
test each question; rather, if we did test any one of them, it would
be true.

Defn. 6.9 A primitive question is a question which can be tested by
one experimental set up.

Defn. 6.10 A product of properties, a-b, is two properties which can be
tested by a product of questions, a.8, where cEa, $eb.

Defn. 6.11 A primitive property a is one such that there exists a prim-
itive question aca.

Now that some of the terms have been defined, we will define a partial
order on the properties, state some results from Aerts' development, and
then discuss how the Aerts development relates to the Foulis-Randall
development.

Defn. 6.12 Let a and b be properties. a <b iff a46, where xca, Beb.

Defn. 6.13 a - b iff a -< b and b -< a.

"-<" is a partial order on the properties. Aerts shows later that the
properties form a complete lattice, with the greatest lower bound of
two properties being represented by the product of two properties, and
the least upper bound being defined as in Defn. 6.14.

Defn. 6.14 Let a and b be properties. The least upper bound of a and
b (a b) satisfies the following requirements:

1) a, b -<a b
-* .2) a, b -< c, where c is a property, implies that a v b -< c.

Aerts' primitive properties apparently come from the event lattice. Clearly,
events correspond to primitive properties, since each event can be tested
by one experimental set up. Arezthese the only primitive properties? The
answer is "yes", since a manual defines all the basic responses that are
allowed on an entity.

Foulis and Randall have asserted that a property lattice is an inverted

manual filter lattice. Before we discuss this further, it would be wise
to first define a manual filter.

Defn. 6.15 F is a manual filter on a manual if F is non-empty and for
a and b in the manual we have the following:
1) if acF, b -< a, then bEF
2) if aeF, a op b, then bCF
3) if a, beF and a v b exists, then a A beF.

The assertion is reasonable if one considers the definition of the man-
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ual filter. If event a is assigned a weight of 1, it would be reasonable
to expect that any event greater than a or operationally perspective to
a would also be assigned a weight of 1. In addition, if both a and b are
assigned weights of 1, a )f b and b 4 a, and both are in the same test,
then the atoms which are contained in a are summed to 1 and the atoms

*contained in b are summed to 1. Unless the atoms in a A b sum to 1, we
have a case where the atoms in a single test sum to a number greater
than 1, a condition which is not allowed. Since a weight of 1 corresponds
to an affirmative response to a question, it is in this way that a filter
set ordering corresponds to a property lattice ordering.

Hovever, the ordering is inverted since if a *b, a, b events, the manual
filter of b is contained in the manual filter of a, but if a is true,
then b is true. So the Foulis-Randall assertion indeed seems reason-
able.

In some of the examples in Chapter 7, we will look at filters and prop-
erties a little more closely.
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CHAPTER 7: Examples

This chapter is intended to give the reader a better understanding
of the topics discussed in previous chapters by illustrating some of
those concepts. The material in this chapter is presented in such a way
that one could get a "feel" for what empirical science is attempting

4. - to accomplish, but for a more rigorous approach the reader is referred
to the previous six chapters.

This paper attempts to strike a balance between the theory of empirical
science and the application of this field to the real world. This balance
is important for several reasons. Naturally, without mathematical rigor,
our empirical techniques are worthless. And without applications, em-
pirical science is just another concept which exists only in man's minds.
Fortunately, it seems that many things that one encounters every day can
be better understood through empirical science, though, as was mentioned
before, empirical science has been sought to explain things as uncommon
to most of us as quantum physics.

* . Empirical science has actually evolved from classical probability theory
which was essentially formalized by Komolgorov in the 1930's. At the
time, Komolgorov was dealing with outcomes of one test or experiment which
was isolated from the rest of the world. If we wanted to test more than
one experiment at the same time, especially if the outcome of one effected
the outcome of another, then we would have a completely different sit-

- - uation.

In quantum physics, we might ask, "What is the position?" of a given
particle in a physical system, and then assign a probability function
to the response, but what if we ask at the same time. "What is the momen-
tum?" The Heisenberg Uncertainty Principle tells us that asking the
second question will effect the outcome of the first question. So here
we have an example of what ultimately empirical science is trying to ac-
complish: to be able to consistently explain the relationship between
outcomes of more than one test. Komolgorov' s classical probability
theory is unable to deal with circumstances such as this.

Empirical science should be useful in many facets of life. For example,

public opinion polls seem to be quite popular presently. But the real
challenge is to be able to correctly interpret the outcome to these

* polls. And the reason that this is a challenge is that a poll is really
a series of tests, generally each having just a few outcomes. Under-
standing the relationship between these tests can significantly effect
the interpretation. For example, most people would respond that they are
in favor of religious freedom in the United States, but if they were first
asked if cults, like the one that lead to the Jonestown massacre, should
be prohibited, people might respond differently. The point being, the
Jonestown question would cause people to respond differntly to the re-
ligious freedom question.

What if in an election poll people selected candidate A over candidate B
two to one, candidate B over candidate C two to one, and candidate C
over candidate A two to one? How would we interpret this? Empirical
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science strives to understand things like this.

In the Foulis-Randall school, we are concerned with manuals (see ChapterS * 2). A manual is essentially a list of instructions as to what tests
(or operations or experiments) are to be performed, and which are the

- allowable outcomes (or atoms). A logic is simply an attempt to tie
together elements of the manual (events) which are equivalent in a very
real sense, without regard for the tests in which the events are con-
tained.

* Let us now begin by looking at some examples.

Example 1. We will begin with a very basic example, which we will build
on later to make a more complicated example. Once the reader examines
our mathematical structures, he will find out that a number of different
scenarios can be fit into them. For this example, let us assume that we
have a port lookout aboard a ship, who can make the following reports as
to whether he has sighted a specific buoy which we desire to locate;

*1 if the buoy is located within 2 points (22.5 degrees) to either
side of dead ahead

2 if he does not see the buoy
3 if the buoy is located within 2 points off the port bow and dead

* .astern (180 degrees to 337.5 degrees relative)
12 if the buoy is definitely not in sector 3
13 if the buoy has been sighted by the port lookout
23 if the buoy is definitely not in sector 1
123 if the lookout is looking for the buoy
0 if the lookout is not on watch

For simplicity's sake, we will call sector 1 "dead ahead", sector 3 "port
quarter"l, and sector 13 "port side." Note that the port lookout cannot
see the starboard quarter, perhaps due to the blockage of the superstruc-

U ture. A drawing of the situation appears in Figure 1.1.

Figure 1.1. Schematic drawing of this
example.
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We will represent this manual consisting of one test (123) first by
drawing a Gr echie diagram. Recall that a manual with one test is
called a classical manual, since the sum of the probabilities on the
allowable outcomes is 1.

Q.3

Figure 1.2. Greechie diagram of
the classical manual in example 1.

A Greechie diagram is a simple way of representing a manual. Each test
is represented by a straight line, and each outcome contained in that
test is represented by a point on that line. A Cr techie diagram is
simply a shorthand way of describing a manual. It is quick and easy to
draw and use.

However, it goes a long way from describing some more important aspects
of a manual. A better way is to draw this classical manual as a semi-
Boolean algebra, in which case we get the following, more informative
structure, called the event lattice.

Figure 1.3. Event lattice of example 1.

The readers who are familiar with algebra will recall that this semi-
Boolean drawing of tihe manual is actually an 8-element Boolean structure,
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B0. This is the representation of the power set of a 3-elemout set.
Ricallan n-element set has a 2n-element power set. Finite Boolean
algebras are power sets of a given set. Semi-Boolean algebras are power
sets of one or more sets (or maximal elements. Or, if you will, "tests"
or "loperations.)

Note that in the manual, some elements (or "events") are written above
others with lines connecting them. An upward line indicates that the
lower element is contained in the upper element. In this manual, there

P are three events located directly above 0. These are called "atoms" or
"outcomes", because they are the most fundamental responses to a test.

It would be wise to digress for just a bit to point out that one of the
theorems in Chapter 4 demonstrated that we could write a test as 123,
rather than 11,2,31, The smallest element as 0, instead of f03, and an
ordinary event like tl,21 as 12. This notation has been adopted because
it is simpler and quicker than using set notation.

When observing this manual drawing (event lattice) , one may note that
it looks like a cube projected onto a 2-space (the sheet of paper), This
is an important observation, since we can learn a lot from considering
the manual as a 3-element power set in Euclidean 3-space. For example,
the atoms form three orthogonal vectors which span 3-space. The "Join"
(least upper bound) of two atoms is a plane. And if one joins the third
atom to the plane, one gets the entire 3-space, 123. Hence, 12 and 3 are
complements since their span (join) is the whole set, and their intersec-

* tion ("meet" or greatest lower bound) is 0. Likewise for 13 and 2, 23
and 1, and 123 and 0.

We can label the manual using Boelean notation and derive the following
manual.

Ila 1I1

.10 Oct

Figure 1.4. Event lattice using BoQlean
.. notation.
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* In this notation, we fix the position of the atoms (in this case, 1 in
the first column, 2 in the second column, and 3 in the third), and if the

* event contains that atom, we write a "1" in the corresponding column.
We write a "0" in that column if it does not contain the atom. Here,
contain" means that the atom is less than or equal to the event, or

- - in set notation, the atom is contained in the set.

This notation is useful because most computer languages deal well with
binary values. In fact, the computer has been used insuizh-a manner so
that conditions which are tedious to check by hand can be rapidly per-
formed by the computer. See the Appendix for an example of such a pro-
gram.

Recall that in Chapter 2, we proved that the direct product of two man-
uals is a manual. B sadrc rdc fB4and B 2 B 4in turn is

Figure 1.5. B 4andB2

a direct product of B 2and B 2* So from this, we see that B 8-B 2xB 2xB 2

We have carried our discussion of this classical manual about as far as
we can, without discussing weights and pure states. We can define a
probability or "weight" distribution asstiming the-probability that
the buoy will pot be spotted is 1/2. Assuming that the buoy may
be anywhere iijhe 202.5 degree visible range, the probability of event 1
is 1/2x4 compass points/lB compass points - 2/18; and the probability
of event 3 is 1/2 x 14/18 -7/18. The durawing of the weights on the event
lattice is found in Figure 1.6.

In a classical system, a pure state Qr extreme point of the set of weights
is simply a case in which an outcome has probability 1 and the other out-

* comes have probability 0. For example, if the event 2 has Drobability 1,
then the probability density distribution is as in Figure 1.7. This case

* . corresponds to the physical situation in which it is known that the buoy
is not in visual range. If the "question" "is the buoy out of range?"
is asked, the answer is "yes" and the physical "entity" consisting of
the ship and the buoy is characterized by the "property" that the buoy
is not visible from the port side.

The other pure states are the cases where either the buoy is dead ahead
(probability of event 1 is 1, probability of both events 2 and 3 are 0),

* 38



.- Figure 1.6. A sample state on the
0 event lattice.

Figure 1.7. A pure state.

or the buoy is on the port quarter. If the latter is the case, then the
property of the buoy being on the port quarter (3) is said to be actual.
Otherwise, it is said to be potential.

The weights x , x, x, corresponding to the weights of the events 1, 2,
and 3, respecivey, ?epresent the "state" of the physical situation sat-
isfying the equation

x1 + x2 + x3 =
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, subject to the constraint that x 0 for 1 i 3. The solution set in 3
* variables is represented by points on the plane xI + x2 + x3 - 1 in the

first octant. The solutions therefore form a triangle which is a convex
set whose extreme points are (1,0,0), (0,1,0), and (0,0,1). The sample
state given in Figure 1.6 is a convex linear combination of these three
pure states. Figure 1.8 is a drawing of the convex solution set.

o00

Figure 1.8. Convex solution set.

Example 2. The example which we are about to consider is a semi-classical
manual. Recall that a semi-classical manual is one in which the'-inteesee-
tion of every pair of tests is 0. One such example would be as follows:

a means the car is red
al means the car is not red
la means that the car is either red or not red
b means that it is hot outside

* b1  means that it is not hot outside
lb means that it is either hot or not hot outside

* The G reechie diagram looks like the following:

* Figure 2.1. Greechie diagram of a
semi-classical manual.

Note that the diagram looks just like two Gr.echie diagrams for a clas-
sical manual. This is because in a semi-clasical manual, the tests are
unrelated. Thus, in the drawing of the manual, we have a semi-Boolean
algebra which appears to be two B4 's attached at 0.

This manual is a dacification of Z2. Recall that dacification is a ghost-
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ing of each event in the dominating set (set of tests), ghosting being
the process in which a unique atom is joined with each event contained
in a principal ideal. Z is the semi-classical manual which has the
integers 1 through n as Roth the atomic set (set of atoms) and the dom-
inating set.

S 0

Figure 2.3. Z2 .

, The only events which are op in this manual are 1_ and Ib. If we construct
the "op logic" (called "logic", for short) we tie together equivalent
events in the sense of being equivalent modulo op. The logic looks like
this:

ka

Figure 2.4. A semi-classical logic.

This structure is known as OM9 6 , the "01' being derived from orthomodular,
a property which is similar to, but weaker than, the distributive prop-
erty. The orthomodular law says that a v (a' A b) - b for all a and b
such that alb. It is not difficult to demonstrate that the distributive
property does not hold on the logic.

Av ( ) - V 0 - H, but

(V A (57v T) r~ i Te%• "a v 'a - 'a Therefore, i ' ( ^b) A

(1 v A A (i v 6), and the distributive property does not hold.

Hughes produced an identical structure in his October 1981 issue of
Scientific American Instead of heat and car color though, he used spin
up and spin down in the x and y directions. These two quantities, x spin
and y spin, are not compatible observables. That is to say, the accuracy
of the measurement of one effects the accuracy of the measurement of the
other. This is the difficulty in quantum physics which all non-compatible
observables share.

41



Example 3. The manual which is about to be examined is the first manual
with which we have dealt that is neither classical nor semi-classical.
It is non-classical, which means that it has more than one test, and has
at least two tests whose intersection is not equal to zero. As was
promised in Example 1, this problem is a more complicated version of the
same problem. Example 4 will even be more complex.

We will keep the test 123 in this manual, with the events designating
exactly the same as in Example 1. In addition, we will add the test 156,
corresponding to adding a starboard lookout to the watch section. The
meaning of the added events are as follows:

5 if the buoy is located two points off the starboard bow to dead
astern (22.5 degrees to 180 degrees relative, hereafter known
as the starboard quarter)

6 if the starboard lookout does not see the buoy
15 if the starboard lookout sees the buoy (known as the starboard

side)
16 if the buoy is not on the starboard quarter
56 if the buoy is not dead ahead
156 if the starboard lookout looks for the buoy

The schematic diagram for the manual is as follows:

3 5

Figure 3.1. Two lookout problem.

In the Greechie diagram one should note that there are two line inter-

secting at a single point. This indicates that the two tests share a

common outcome. Both the G-eechie diagram and the event lattice are as

follows:
5

Figure 3.2. G reechie

diagram of two look- s
out example.
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13 6 IIsMX

Figure 3.3. Event lattice of this example.

The manual can be drawn in a slightly different manner which makes it easier
- to identify the op classes.

" S

" 0

Figure 3.4. Alternate drawing of the

manual showing dotted oc reflection line

and circled op classes.

As the reader can see in Figure 3.4, the o classes are circled. 123
op 156 and 23 op 56. 123 and 156 both mean that a test was performed,
and 23 and 56 both mean that the buoy was not dead ahead. So, in a
very real sense, ov classes are classes of "equivalent" events.

Note that in this figure, the dotted oc reflection line really acts as
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a line separatn4 an event from its operational comDlement. For example,
12 is directly across the line from its operational complement 3, and 123
is as far away from the dotted line as its oc, 0.

Wien we connect the circled op pairs in Figure 3.4, we end up with the
* - logic in Figure 3.5.

Figure 3.5. The op logic.

However, if we reconfigure it, we come up with the alternate form of the
logic found in Figure 3.6.

NIN

"-. ,,f-

I 
IN

N -- "

N NI

Figure 3.6. The alternate representation
of the logic.

This alternate drawing is useful for several reasons. First of all, it

44



gives one a sense of orthogonality, as in Example 1. Secondly, one can
see that from this figure, M2 and M are simply different coordinate
system for Euclidean 3-space, sharing only the axis r. Also, 23 and 6
are representations of two sets of vectors spanning the same 2-space.
Figure 3.7 shows the same 3-space coordinate systems from a different
verspective.

Figure 3.7. Logic in 3-space from a
different perspective.

SWien one notes that Euclidean 3-space is really real-valued 3-dimensional
Hilbert space, one wonders what ramifications this may have when placed
in the perspective that quantum mechanics was formally derived in terms
of Hilbert spaces. This will be discussed more after we have looked at
Example 4.

Chapter 6 was spent looking at a little of the work of Aerts and Piron,
Their work deals with "questions", "states", and "properties." What
we will look at is the oroperty lattice. Recall that a proverty lattice
is ordered by "-<", which is spoken as "stronger than", where a -< b
if whenever a is actual, b is actual. We will construct the filters
of the primitive properties, since it appears that a manual filter lattice
taken form the event lattice is an upside down vrimitive property lattice,
The order on the filter lattice is set containment.

F(1) - {1,12,13,15,16,1231156}
F(2) - {2,12,23,56,123,156)
F(3) - {3,13,23,56,123,1561
F(5) - {5,15,56,23,123,1561
F(6) - (6,16,56,23,123,1561
F(12) - {12,123,156)
F(13) - {13,123,1561
F(23) - F(56) - {23,56,123,156}
F(15) - {15,123,1561
F(16) - {16,123,1561
F(123) = F(156) - {123,1561
F(O) - {1,2,3,5,6,12,13,15,16,23,56,123,156,0}
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Figure 3.8. Primitive property lattice.

In this case, the primitive property lattice is the same as the logic,
though by no means will this always occur. Note that if one turned this
structure upside down, one would have the filter lattice. The lattice
in Figure 3.8 has been dubbed "the ghost of O6", since it is the direct
product of B2 and OM6 .

Suppose, as Aerts suggests, we allow non-primitive properties. These
are formed by combining two or more primitive properties using ""
(spoken "and"), which gives us a property which is actual if and only if
any of the primitive questions associated with the primitive properties
connected by the dot, when tested, would also be true.

Aerts suggests an example in his doctoral thesis to explain his meaning.
If we were to test a piece of wood to see if it floats, we would expect
that it would. If the test is true , we say it has property a. If we
were to test a piece of wood to see if it burns, again we expect it would.
If the test is positive, we say it has property b. If we want to desig-
nate for that same piece of wood that it will float and it will burn, we
designate it a-b. If we tested either property, we would find it to be
actual. But what happens if we try to test both properties? If you test
a piece of wood to see if it floats, it will get wet and not burn. If
you test a piece of wood to see if it will burn, it will probably not
float very well. For a-b to be actual, we do not require that a and b
both be tested and be found actual. Clearly, you may test one, and as
a result of that test, effect the second test.

Recalling Hughes' example fom Scientific American concerning spin up
and down in the x and y directions, if a particle is spin up x and spin
up y, let us call this property c-d, then whenever one is tested, we
should get the expected results. But if we test spin up x, and then
test to see if we have spin up in the y direction, we may find that we
have spin down in the y direction. This is because testing spin in the
x direction effects the spin inithe--y:d±:e~ttn.
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*Getting back to the original goal of Example 3, let us generate the entire
propertyjattice by generating the remaining manual filters. Note that
we would not have a filter like F(1-2), since 1 V 2 exists, and 1 A 2 - 0,M and so we would just simply generate F(O). Recall that if the join exists,
the meet must also be in the filter.

F(2-5) - {2,5,12,23,56,15,123,1561
F(2-6) - {2,6,12,23,56,16,123,156}
F(3.5) - {3,5,13,23,56,16,123,156}

*F(3*6) - {3,6,13,23,56,16,123,1561
F(12-15) - {12,15,123,156}
F(12-16) - {12,16,123,156}
F(13-15) = {13,15,123,1561
F(13-16) - {13,16,123,1561

Our new property lattice looks like the following:

Figure 3.9. Two lookout property lattice.

It is clear that this lattice is a lot more complex than the primitive
property lattice. Again, if one inverts the lattice we will be left with
the complete manual filter lattice ordered by set containment,
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Example 4. As promised, this example is a more complex version of the
one found in Example 3. In this case, we post a new lookout, the aft
lookout, who can see sector 3 and sector 5, but cannot see sector 1.
The :-following is a list of interpretations of events which are in this
manual, but not seen in either example 1 or example 3.

* 4 if the aft lookout cannot see the buoy

34 if the buoy is not in the starboard quarter

35 if the aft.lookout sees the buoy
45 if the buoy is not in the port quarter

345 if the aft lookout is looking for the buoy

7

" i 5

Figure 4.1. Drawing of the lookouts'
fields of vision.

hen we draw the Greechie diagram ofthe manual, we get the following:

i-1i

o'(o

3'" 5 5

Figure 4.2. Greechie diagram of Wright
Triangle.

Because of the Greechie's shape and because of the work of Ron Wright
with this manual, it is called the "Vkight Triangle." This manual is
interesting for many reasons, which we will soon see,
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Looking at the drawing of the manual in Figure 4.3, note that in the

/ '

Figure ~ ~ 4.3.. Evn latc o-h
itef Tha is tosy twudb oeacuaet rwtea lo

is; relyamna.Teeaesvrlwy ovrf hs n st

//

make use -of a' coptrpormetild,,U~. o s hsporm

/

/ / .
'/ ' 1/

the rFigure 4.3. Event lattice for the
n rcight Triangle.

rowsof ao 1 is listed twice. Thils is because the manual wr arounditself. That is to say, it would be more accurate to draw the manual on

the surface of either a cylinder or a cone.

One may question at this point how we know that this semi-Boolean algebra
is really a manual. There are several ways to verify this. One is to
make use of a computer program entitled 'ANUAL1." To use this program,
we enter into the termi nal each of the three tests, one at a time. The
computer will take these tests, generate the semi-Boolean algebra, find
the relative complements of each event with respect ot the tests in which

• . each is contained, search out op '5, and then verify that every possible

combination of x oc y, y op z, yields x oc z. In this way, we found that
the Wright Triangle is a manual. This program is found in the Appendix.

Another way of verifying that we have a manual is to note that this
manual is a dacification of-- semi-classical manual. In Chapter 2, it
was shown that a dacification is always a manual.

A third way of verifying that we have a manual is by checking that all
of our "Z4s" are "crossed." This method was devised at the University-' of Massachusetts at Aherst.'° It says that one should write an event
connected with a straight line to an event oc to it on the other hide~of
the original line. This new event is connected with all events oc to it
on the first side of the line. If we form a "Z" whlich is not crossed,
then we do not have a manual.
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Figure 4.4. Semi-classical manual through
which the Wright Triangle was arrived by
mans of a dacification.

K .o

no,. - -. + CA. "a -crostd

7- A "Oc- Z)

Figure 4.5. Amherst method of checking for
a manual.

.6

Figure 4.6. Result of applying Amherst method

to the Wright Triangle.

Now that we have more than settled that the Wright Triangle is a manual,
let us construct a logic. Ve have the following non-trivial op equivalence
classes:

12 op 45, 23 op 56, 34 op 16, and 123 op 345 op 156

If one checks the interpretation of an op pair, for example 12 and 45,
one will note that they are identical. Bth 12 and 45 mean that the buoy
is not on the port quarter. This demonstrates the reason for looking
at the logic.

As was mentioned in Chapter 3, the logic may exhibit certain difficulties,
and this logic has more than one. Just like in Example 3, the logic is
not distributive. But an even more significant problem is that the least
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*upper bound of 1 and 3? One possible candidate is fbut another pos-
sible least upper bound is V. 1. This presents some difficulty in
working with the logic.

Z/

X *

Fiur 4..Th ogc

In Exaple 3 Fiure be 4.7 Threen logic.inEcldn -pae

In this example, we cannot. The inability to represent it in Euclidean
3-space, or a finite Hilbert space of 3 dimensions, may imply several
things about the present formal development of quantum mechanics. Since
quantum mechanics was developed in terms of infinite dimensional Hilb-'rt
space, a logic structure such as this which exists in terms of empirical
logic may indicate that the Hilbert space structure limits quantum mech-
anics by not allowing certain systems of tests or certain states. On
the other hand, it may also be reasoned that quantum mechanics, by nature,
will not allow a logic such as this one.

The next thing that we want to look at with respect to this example is
weights. In Chapter 5, we said that a weight is a way of assigning

* values between 0 and 1 to each event in such a way that the sum of the
weights of the atoms in each test is 1, and the weight of an event is
equal to the sum of the weights assigned to the atoms which it contains.
From these qualifications, then, we can deduce a system of equations de-
signed to yield solutions to the constraints.

If we allow x to mean "the weight assigned to event n", then we have
the following system of equations:

xl + 2 +-x

x3 +x 4 +x 5  m

X1~ + x5 +x 6 - 1

and 0O-4xi 1 for I i t'6
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This system of equations completely describes the set of allowable weights,
which when graphed in 6-space forms a convex set. If we could generate
the extreme points in some way, then all of the allowed solutions are
simply convex linear corbinations of the extreme points. Tk will call
the extreme points "pure states." These pure states are of importance
also because Aerts has asserted that the atoms of the property lattice
correspond to pure states, if the pure states exist.

By borrowing some theorems from the simplex method of linear programming,
we have found a technique for solving for the pure states, if they exist.
The reader should refer to Chapter 5 for the theorems.

One of the qualifications of this method is that all varialbles be non-
negative. Vb already have this with 0 f xi for 1 t: i £ 6. In addition,
since each of the weights is non-negative, the first three equations al-
ready require xi C 1 for 1 - i 6. Thus, we have reduced our system
to 3 equations and 6 unknowns, which can be expressed as a 3 x 6 aug-
mented matrix such as the following:.1i 0?001]

_0 1 1 1 0
0,0 0 0 1 1

The technique requires us to set 3 columns in the 3 x 6 unaugmented
matrix equal to zero. If the remaining 3 x 3 determinant is non-zero,
implying linear independence of the remaining three vectors, one then
solves the 3 x 3 augmented matrix. If each of the variables in the
solution is non-negative, then the solution corresponds to a pure state.
If one or more variable is negative, then the solution does not cor-
respond to a pure state. If one sets every possible combination of
n - m (humber of columns minus number of rows) columns equal to zero, one
will find all of the pure states. In this case, as mentioned above,
n-m-3.

Proceeding to solve this problem, we get the following:

Non-zero columns

1,2,3 .1 1 0 0 1

01 0 1 0-1: xi x3 1, x 2  -1

Since x2 is negative, this does not correspond to a pure state.

41,2,4 rl 1 0 r L 0 0li
.. 0 1 1 0 = 1 0 01 x =x 4  1, x2  0

-0 0 0 0 1 1,

Since this solution meets all of the conditions, one pure state
is (xl,x 2 ,x 3 ,x 4 ,x 5 ,x 6 ) = (1,0,0,1,0,0). Since here x2 - x3 = x5  x6 ,
we no longer have to look at any combinations with the first and fourth
columns as non-zero columns.

1,2,5 j1 1 0 1  0 0 01 Il 0 0
0 o 1 1 - 1 1 0 1;- 10 1 0 1
0 1 1! 0 0 1 1. 10 0 1 1
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Non-zero columns

x2 - x5 =1, x1 - 0

Thus we have another pure state - (0,1,0,0,1,0). Note that we no
longer have to look at 2-5 combinations.

12 1

det 0 0 0 - 0

1 o

Therefore, this will not yield a pure state.

1,3,4 W_ skip this since we already solved for a 1-4
combination.

. 1,3,5 1l 1 0 1) '1 0 -1 0 1 0 0 1/21
0O 1 1 1 - 0 1 1 1 -0 1 0 1/2

0 1 1 0 0 2 1 0 0 1 1/2

x 1 - x3 - x5 -1/2

This is non-dispersion free, (i/2,0,i/2,0,i/2 0), though it is clearly
a pure state. Dispersion free states, states with only O's and l's,
are associated with classical results. This non-dispersion free
pure state is purely a non-classical result.

1,3,6 1 1 0 11 1 0 0 .

0 1 0 1 "0 1 0 1' x3 -x 6  1, xI  0

o1 l0 0 0 1 il

So our fourth pure state is (0,0,1,0,0,1). There is no need to look
at 3-6 combinations again. T& can skip 1,4,5 and 1,4,6.

1,5,6 l 0 0 11 r00 11
1 0 - 1 1 X1  x5 -1, x6 - -1

1 1 1 1J 0 0 - J

" Since we have a negative solution, this does not correspond to a

pure state.

2,3,4 1 1 0 !det 0 1 1 -0
"-"0 0 0.

Wb skip 2,3,5; 2,3,6; and 2,4,5.

* ~2,4,6(10
0. 1 0 1 x2  x4  x6

=

L 0 1 1

The fifth solution is (0,1,0,1,0,1). Ub skip 2,5,6.

3,4,5 fl 0 0 11 1 0 0 11
:1 1 1 ji ; 0 10 - x 3 

= x5 - lx 4 -i
-0 0 1 1 '.0 0 1 lj

This does not correspond to a pure state. lb skip 3,4,6 and 3,5,6.
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Non-zero columns

4,5,6 (0 0 0
det 1l. 1 01 0

10 1 1!

Finally, the process is complete, and we have 5 pure states: (1,0,0,1,0,0),
(0,1,0,011,0), (0,0,1,0,01), (1/2,0,1/2,0,1/2,0), and (0,1,0,1,0,1).
-FtQm the&e. sglutton, ;all 9f the weights may he f Qund..

One of the most useful things about this technique is that it is easily
adaptable to the computer, since the entire procedure just demonstrated
used a simple algorithm. As a result, the process can even be made
quicker and easier.

Ith will now move on to generating the primitive property and property
lattices. W~ will denote 123 by p, 345 by a and 156 by s. This is done
for the sake of brevity.

F() ihse of events)

F(2) -{2,12,45,23,56,p,a,s)
FM3 - 3,13,23,56,34,16,6,35,p,a,s)
F(4 { 4,34,16,45,12,p,a~sl
F(5) -{5,15,35,45,12,56,23,2,p,a,sl
F (6) - 6,16,34,15,23,p,a,sl
F (23) -F(56) - {23,56,p,a,s)
P (12) .{13,p,a,s}
FP(12) - F(45) - [12,45,p,a,s)
F (35) - {35,p,a,sl
F(34) - F(16) -{34,16,p,a,s)
F (15) - {15,p,a~s}
F(p) F F(a) -F(s) { p,a,s}

I>.
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We will now construct the entire property lattice.

F(13-15) - [13,3.5,p,a,sl
F(15. 35) - {15,35,p,a,s)
F(13.15) - {13,15,p,a,s}
F(13-15-35) - {13,15,35,p,a,s}
F(13-34) - {13,34,16,pa,s}
F(35-23) - {35,23,56,p,asl
F(15.12) -{15,12,45,p,a,s}
F(2-46) -{2,4,6,12,23,34,45,56,16,p,a,s}

And thus we arrive at the property lattice.
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*First of all, 1 -< 4. This makes sense to us logically since whenever
*the buoy is dead ahead, we would expect the aft lookout to report that

he could not see the buoy. But 4 - 1, which also makes sense, since the
aft lookout could report not seeing the buoy if the buoy were really not
within visual range of any of the lookouts.

In this manual, 2 -< 5, but in the manual in Example 3, 2 -? 5. Vb need

* to find some exp~lanation for this occurance, since our logical reasoning



tells us that when 2 occurs, 5 should also occur. One way of explaining
this is to say that the manual in Example 3 simply does not have enough

information, or tests, to describe the system. This is somewhat supported

by the fact that the manual in this example, having one more test, accur-

ately describes the relationship between 2 and 5.

Another explanation is that the manual in Example 3 does not distinguish

between the events 2 and 3, and between the events 5 and 6, when one
looks at the systems of equations which describe the states. So, mathe-

matically, there is no reason to say 2 -< 5, since clearly 3 -4 5, and

2 and 3 can, in terms of the system of equations, be interchanged.

Finally, another possible explanation is that in the property lattice,

2 and 2.5 are essentially the same property, since 2.5 means that the

' port lookoutsees nottiing and the buoy is on the starboard quarter. If

we allow 2 to be collapsed onto 2-5, to become identicAl occurances, then

we have the desired order in the property lattice of Example 3.

Aerts' has asserted that pure states are identified with the atoms of the

property lattice. For this example, we can see that this assertion is

true. I coorresponds to (1,0,0,1,0,0); 3 corresponds to (0,0,1,0,0,1);

5 corresponds to (0,1,0,0,1,0); 2.4-6 corresponds to (0,1,0,1,0,1); and

13"15.35 corresponds to (1/2,0,1/2,0,1/2,0).

For our example, we have difficulty in finding an explanation for the last

pure state. %hat it seems to say is that no matter which lookout is asked

if he sees the buoy, he will respond that he sees it. It is as if the

captain of the ship turns the boat so that the lookout he asks will auto-

matically see the buoy. This is why this state is referred to as being

non-classical - in our ordinary experience, we cannot explain this state.

One way at looking at this state is to say that our system of three tests

tells us more about the system ofthe buoy and the lookouts than we need

to know. Perhaps we have no right in trying to apply non-classical

techniques to this classical problem. It is as if this is a state which

knows everything about the system.

One way in which we can deal with this state is to collapse it onto 0.
In turn, 13:35 collapses onto 1, 13-35 collapses onto 3, 15-35 collapses

onto 5, 13 collapses onto 13"34, 35 collapses onto 35'56, and 15 collapses

onto 15"15. This structure, then, stongly resembles the primitive prop-

erty lattice, except for the fact that this one has the property 2"4-6.

* It is clear that there is much work left to be done in the area of apply-

• .ing non-classical techniques to classical problems. Not only developing

more examples, but also developing a better understanding ofour results.

Thus far, people like Foulis, Randall, Piron, and Aerts have accomplished

much in the development ofthe theory of empirical science, but have left

open the application of this theory to others. It is hoped that these

examples suggest some applications, and yet also leave questions in the

reader's minds about other applications and other interpretations.

Example 5. Thus far, we have considered four examples of manuals. Perhaps

it would be appropriate to introduce a semi-Boolean algebra which is not

a manual. Since we have already proven that a semi-Boolean algebra with
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one or two tests is a manual, we will look at a case with three tests.
The Greechie diagram is as follows:F C

• : D

Figure 5.1. Greechie diagram of a semi-
Boolean algebra which is not a manual.

In this diagram, the reader will note that this is not the typical type
of Greechie diagram, in that one of the tests, AIE, is represented by

*a curved line. In many diagrams of this type, there is no way of rep-
resenting the manual by straight lines. In addition, when there are

.* overlaps of more than one atom, the diagrams are a bit unusual, and we
sometimes represent th,, overlaps by parallel lines drawn closely together.

-%en we represent this example in an event lattice diagram, we get the
drawing in Figure 4.2. AaC

A L~, o/

j

-. /.6'.. t-'. -- ....-.... "

Figure 5.2. Event lattice of
0 this example.
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Though this diagram is not ordered as well as the ones in the previous
examples, this is not the real key to this not being a manual. Clearly,
there are more complicated-looking semi-lbolean diagrams which are man-
uals. But when we search all possible combinations of op's and oc's,
we find that AB oc DE, DE op AB, but clearly AB is not oc to A. The
same is true of- C and A, and C and DE. Therefore, because of these
counter-examples, we do not have a manual.

In terms of the method of Z's demonstrated in Example 4, we get the fol-
lowing drawing.

Figure 5.3. Amherst method of checking
a mnual by Z's.

Since AB is not oc to AB, we cr.,!nnot connect them across the oc line.
This may lead one to ask, "Why i condition M so important?" Since we
are talking about events from an event lattice, without condition M, it
is possible to have the following: AB occurs (is assigned a weight of
1), which tells us that DE non-occurs (weight of 0). This in turn shows
us that C occurs, which implies that AB non-occurs. This contradicts
our original assumption of AB occurring. In empirical science, if we per-
form one test and get a result, we expect that if another test allows that
result, then if we had performed that second test originally, we should
have gotten that same result.

In some cases, we can add tests to a semi-Boolean algebra to make it into
a manual. In this example, we cannot add tests to make it into a manual,
because we will never be able to add a test to make AB oc AB. But in the
next example, we will be able to make it into a manual by adding a test.

Example 6. This example is called the "hook." It gets its name from the
appearance of the Greechie diagram.

%L

A

Figure 6.1. Greechie diagr.u of the "hook."

Our counter-examples to condition M for this example are A oc B, B op D,
but A is not oc D. Also, C oc D, C op A, But again, A is not oc D. In
order to make A oc D, we need to add the test AD.
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Figure 6.2. Event lattice of the "hook."

C1

Figure 6.3. Greechie diagram of the "square."

gc ..

U C.o

,V.'

\ /

C)

Figure 6.4. Event lattice of the "square."

ihen we test to see if the new algebra, the "square", is a manual, we find
;b out that it is. Therefore, we have demonstrated a case where the addition

of one test made the new algebra into a manual.

Example 7. The purpose of this example is to demonstrate that a manual
can have no states, and yet have many filters or properties. The name
of this manual is the "windowpane" due to the appearance of its Greechie

Mdiagram.

Since a Greechie diagram represents its tests by straight lines, the tests
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are ABCD, EFGH, IJKL, AEI, EFJ, CGK, and DHL. It is not obvious whether
the semi-Boolean algebra satisfies condition M: this is clearly not a
dacification, we have more than two tests, and it is not the result of
a direct product of manuals. In this case, it is no easy task for one
to check all possible combinations for condition M. This is one in-
stance where a computer program saves much time. The windowpane has been
verified as a manual, by means of the program MANUALl, found in the Ap-
pendix.

A C.

L

r ..- "

Figure 7.1. Greechie diagram of the
windowpane.

Since all of the tests must be assigned a weight of 1, we verify if any
states exist. 1e have 4 tests in vertical columns, and 3 tests in hor-
izontal rows. Thus, if we sum the weights of the tests in a vertical
direction we get 4, and if we sum them in a horizontal direction we get

, - 3. As a result, we have found that there is no way to assign weights.

However, filters do exist for this manual. For example, if we generate
the filter of A, we get A and all the events which contain it. Also, if
A occurs, then an event such as L could occur; and if both A and L occur,
then the event FC could also occur. So despite not having any weights,
there are many ways of assigning values to events such that every test
contains an atom with non-zero probability. W have given an example
of a manual filter in which the addition of any event would make the
manual filter generate the entire set, called a manual ultrafilter.

Example 8. This example is similar to Examples 1, 3, and 4, in that it
has been applied to a navigational system. Refer to Figure 8.1 to see
the sectors which divide up the lookout's reports.

In this example, we have two lookouts -- one a port lookout and one a
-- starboard lookout. The port lookout can report 1, 2, 3, 4, 5, or 7

(if the port lookout does not see the buoy). The starboard lookout
can report 1, 2, 3, 4, 6, or 8 (if the starboard lookout does not see
the buoy). The resulting Greechie diagram is expressed in Figure 8.2.
Recall that the side by side lines actually represent an over lap in
the Greechie diagram.

Vhen we draw the event lattice, we get a structure as in Figure 8.3.
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3 ,

Figure 8.1. Sectors of the lookouts' reports.

I FiSure 8.2. Greechie diagram.

* t' - , , ./

-u

Figure 8.3. Event lattice of 6-sector
problem.

One may note that this figure appears to be two 6-dimensional hypercubes

overlapping in a 4-dimensional hypercube. This is a semi-Boolean algebra

with 112 events. One may note that all of the op pairs can be found within

the filters of p~s and sup, which are drawn as B16 's, and are found on the
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extreme left and the extreme right of the manual. Drawing the logic by
overlapping these two filters, we get what is known as 0 6 . That is,
it represents the direct product of OM6 and u. &t more importantly,
0M96 is the free algebra generated by two subspaces of a Hilbert space.

*'If one picks out the right events in the logic, one can generate all 96
events (subspaces in a Hilbert manual) by intersection, complementation,
subtraction, and spans. It seems then, if we can pick the proper two events,
we could generate every other event by asking combinations of these two
questions. Perhaps this could be useful in the analysis of certain types
of problems which have a similar Greechie diagram, and are constrained
by the number of allowed variables.

6'
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Conclusions

As was mentioned in the introduction, empirical science was largely brought
about as a method of rigorously formalizing quantum physics. In that section,
we cited several instances in which the outcomes to quantum mechanical experi-E ments vary significantly from what one would expect to get classically.F . lMotivation was given concerning the historical development of not only this
field, but the field of algebras as well.

* In the first six chapters, some areas which are of interest to the empirical
logician were developed with a certain amount of rigor. We began with the
axioms of subtraction algebra, from which we derived many theorems pertinent
to later theorems. We defined meets, joins, and relative complements in terms
of this algebra. In addition, we established a constant o and a partial order.

When we moved onto Chapter 2, we proved the equivalence of subtraction algebras
and semi-Boolean algebras. We then defined operational complements and oper-
ational perspectives, from which we set down the condition which makes a semi-
Boolean algebra into a manual. It is this structure in which empirical
scientists are iuterested. From there we defined special kinds of manuals,
and established conditions under which certain semi-Boolean algebras were

W assured to be manuals.

.7. In Chapter 3, we demonstrated that op was an equivalence relation, and set
up an order diagram on equivalence classes of events. A partial order was
established, and various theorems of properties on the logic were set down
and proven.

Chapter 4 accomplished two things. First of all, through a version of Stone's
Representation Theorem, we shoved that a semi-Boolean algebra was the equiva-
lent to an algebra of sets of atoms contained in each event. Secondly, we
explained a computer program written to generate the entire semi-Boolean

algebra from the tests, and then checked it to see if the manual conditionss were satisfied.

Weights formed the primary concern in Chapter 5. The chapter began by
defining weights, and then defined states and pure states. Since one can
find all states from all of the pure states, it was useful to have demon-
strated here a technique - easily adaptable to the computer - which would
find all of the pure states.

Chapter 6 was taken from Aert's doctoral thesis The One and the Many. He
described and developed many empirical techniques primarily to uses in his
study of quantum physics. After examining his lattices, we found that they
were related to the op logics of Foulis and Randall. We later applied these

- property lattices to some of the examples.

The examples were all found in Chapter 7, the last chapter. Here, we demon-
strated a cross section of semi-Boolean algebras which were representative of
the various properties discussed in the previous chapters. of special note
were the four examples related to the problem of navigation in which lookouts
were used who were perhaps unable to see all the way around the ship. With

63



.. .. .. . . . -.

many variations on this set-up, we were able to demonstrate how empirical
techniques would be applied to this problem.

The point that needs to be driven home here is that this is simply one area,
outside of quantum physics, in which techniques originally developed to use
in quantum logic could be applied. Many other areas seem wide open for use
of these techniques. Take for example opinion polls, which have gained popu-
larity in recent years. An opinion poll consists of questions or tests,
usually with finite outcome sets in each test. Perhaps applying empirical
techniques defined in this paper would reveal things about the opinion poll
which will lead to a more accurate interpretation of the results.

The potential for applications, at this point, is unlimited. One simply
needs to be able to envision one's area of interest as a system of tests
with associated outcome sets. As developments in empirical science continue,
interpretation of areas in which empirical techniques have been applied will
increase, and perhaps lead to significant understanding of things previously
hidden.

' - Empirical science is potentially a great avenue of understanding and inter-
pretation for all sciences, and many areas outside of science.
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Appendix

3 This Appendix contains the computer program, MANUAL 1, which is
used to verify that the manual condition is satisfied. Pages A-2 through
A-6 has a listing of this Fortran program. Page A-7 has a sample run of
the program for the "Wright Triangle." (See Example 4 in Chapter 7.)
Pages A-8 through A-10 is the result of a sample run of the "windowpane."
(See Example 7 in Chapter 7.) And finally, pages A-ll and A-12 represent
a sample run of Example 5 in Chapter 7, a semi-Boolean algebra which is

* not a manual.
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INPIUT NLIMBEER OF TEST6S? 7
INPUT TES7S ALPHA,\UiMER! ALLY, CNE AT A 7- ? AZ.CD

? I j.KL
? A -z1
? BFJ
'7 COK

7H]ES IS A MANUAL
THI7S 1S COHEREN7

TYPE IN J. !.- YES
DO '.'OU WANT TO P:NT OUr EVENTS, CCS, AND PERPS? I

ABCD ABC DEFC'H K L
D ASC ASCHL

C P.SD AZDGK
CD AB AS

ACD ACDFJ
3D AC AC

AD AD
BCD A A
A BCD 3CD2

S F.
3C

ABC D

ABCD
EFGH A8C DE F GHI <L

GEFH CEFHK

asEf
E Gh
EH

EHE

FH

EFH W
EFG -
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IJKL ABCDEFSHIJKL

K 4JL ICSIJ L
XL iJ I

TKL 3F7L
1K

KIL IL
JKL

* I jKL AEJKL
IL JK

ZKJL JL

1.3 KL KL
IJL K K

!.KL L
±JKL

AEI A BCDEFGH I .K L
T AE AEJKL

A! AFGHT1
A A

-El BCDEI

Az I

SFJ AZCDE-FGHIjKL
3= .3FIK2

F B
F. ACDFJ

COK A 8C D EGh I ..i.
KCa CGIJL'

G CXK CEFHK

-K AB:)CK
G, G

Ca K K

DHL ABCDEFCHIW ._
L Di-.D-jK
H DL.ZFCL

SHL B

L
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-M YOU-WANT TO PRINT OUT OP PAIRS? 1

OP1 OP2

.3CD E I
ACDF

-Sc HL
ABCD EFGH
ASCD IJKL
ASCD AEI
.-)BCD J
ASCD CGK
-ACD DHL
-0H AI
..uH BJ

ZFH CK
DL

=='am JKL
==GHAE

==GH COK
-'H DHL

JL CG

,jL DHi
:L AEI

.jKL CGK
'6JKL DHL

CGK
DHL

=J COK
DHL
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INPUT NUMBER CF TESTS? 3
' PUT TESTS ALPHAN UM RCALLY, ONE AT A T>..? ABC

? CDEII? ABDE
DTHS :S NCT A MANUAL

TIS IS NOT COHERENT

TYPE IN I IF YES
30 YOb WANT TO PRINT OUT EYENTS, OCS, AND PERPS? 1.

E vENT CC ?ERP

ABC ACDE
AS AE.E
AC ACDE
A A

A SC BCDE
" AC B 9

; PS C CDE
ABC

CDE ABCDE
- CD ASCD
D CE ABCE
iE C ABC

C DE ABDE
D D

CD E
C.DE

AZDE ABCDE
ABD ABCD

Z, ABE ASCE
:- E AS ABC

B ADE ACDE
BE AD AD
SD AE AE
" DE A A
A EDE 3CDE

S. A D SD

: AD BE SE
ADE B
A PDE CODE
ABE D D

iABD E £

ABDE

DO YOU 4ANT TO PRINT GLT CP PAZ.S? 1

F PIP2

C DE

AC AD
AS
ABC 0D
ABC D

CE ABE
CD ASO
CD£ ABDZ 7
CDE-2D 79

* . . -. . . .1



2.3 ~'C I ANT ~ST 7H MJNT E>E'X%.LES TO CONDI710N?1

-::P X'N 7 C

80



CR UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dae Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSR RPBEFORE COMPLETING FORM

' -I. MePOMNUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER:"U.S.N.A-. - TSPR; no. 121 (1982) 13 P - / /-

4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED

AN ALGEBRAIC APPROACH TO EDIRICAL SCIENCE AND Final. 1981/1982
QUANTUM LOGIC. 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) I. CONTRACT OR GRANT NUMBER(@)

Thomas, Timothy ScottA

3. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WOnRK UNIT NUMBERS

United States Naval Academy, Annapolis.

I. CONTROLLING OFFICE NAME AND AOORESS 12. REPORT DATE

29 July 1982
13. NUMBER OF PAGES

United States Naval Academy, Annapolis. 80
14. MONITORING AGENCY NAME & AODRESS(If differnt from Contfollind ifttce) IS. SECURITY CLASS. (of thio report)

UNCLASSIFIED
Ile. DECLASSI FICATION/ OOWNGRADING

SCHEDULE

I0. DISTRIBUTION STATEMENT (of title Report)

This document has been approved for public release; Its distribution is
UNLIMITED.

* " 17. DISTRIBUTION STATEMENT (of the abetrenl onterd in Stock 20, if diftt Im Rep.)

This document has been approved for public release; its distribution is
UNLIMITES.

IS. SUPPLEMENTARY NOTES

Accepted by the U. S. Tricent Scholar Committee.

IS. KEY WORDS (Contlnue an reoeree *ide if neoeear end Identify by block numbet)

Quantum theory

20. ASTRACT (Continue an reveree side if neceeOY end Identify by bloc.k nuber)

This paper develops some of the work of Foulis, Randall, Aerts, and
Piron in the fields of empirical science aLu quantum logic from an algebraic
point of view. More specifically, it begins with three axioms of what is
called a "subtraction algebra," and generates various theorems associated with
properties which are useful in empicical science.

After a foundation is established, it moves on to define the term

(OVER)

DD JAN, 1473 EDITION OF I NOV 6 IS JSOLTK UNCLASSIFIED
S/N 0102- LF. 014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (When Dote tere0



UNCLASSIFIED

SECURITY CLASSIPICATION OF THIS PAGE (Wam DO ZeM

"manual," a tool devised by Foulis and Randall in their study. We define
it as a "dominated, atomic, semi-Boolean algebra" which satisfies an additional
condition called "condition M." Several properties of the manual are discussed,
and different types of manuals are given: classical semi-classical and
non-classical.

We define operational complements, orerational perspectivity, atoms,
events, and tests, before moving on to define a logic, and how it is derived
from a manual. properties of the logic are discussed including a subtraction
operation, a partial order, and an ortho complement.

Next, a computer program is presented. Its purpose is to take a finite
semi-Boolean algebra and decide if the algebra is a manual. This is followed
by a brief non-classical probabilistic discussion, which includes topics such
as weights, pure states, and dispersion-free states.

Aerts' and Piron's work with properties, states, and questions is briefly
discussed before moving on to several examples, some of them arising from
navigation problems. The examples include the "hook," the "square," the
"Wright Triangle," and the "free algebra." Empirical techniques are demonstrat-
ed on these examples. The examples comprise the bulk of this paper.

S/N 0102- LF.O014-6601

TTJT A 00TVTf

SECURITY CLASSIFICATION OF THIS PAGE(WhaM DO& Zat. .0



- ------- ~--.--------------------------------------~.-- -------- -v -------- - 2

p


